Charpin / Pott / Winterhof | Finite Fields and Their Applications | E-Book | sack.de
E-Book

E-Book, Englisch, Band 11, 285 Seiten

Reihe: Radon Series on Computational and Applied Mathematics

Charpin / Pott / Winterhof Finite Fields and Their Applications

Character Sums and Polynomials
1. Auflage 2013
ISBN: 978-3-11-028360-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Character Sums and Polynomials

E-Book, Englisch, Band 11, 285 Seiten

Reihe: Radon Series on Computational and Applied Mathematics

ISBN: 978-3-11-028360-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)





Charpin / Pott / Winterhof Finite Fields and Their Applications jetzt bestellen!

Zielgruppe


Researchers, Lecturers, and Graduate Students in Mathematics, e.g

Weitere Infos & Material


1;Preface;5
2;Character Sums and Polyphase Sequence Families with Low Correlation, Discrete Fourier Transform (DFT), and Ambiguity;13
2.1;1 Introduction;13
2.2;2 Basic Definitions and Concepts;14
2.2.1;2.1 Notations;14
2.2.2;2.2 Polynomial Functions over Fq;15
2.2.3;2.3 Characters of Finite Fields;16
2.2.4;2.4 The Weil Bounds on Character Sums;16
2.3;3 Correlation, DFT, and Ambiguity Functions;17
2.3.1;3.1 Operators on Sequences;17
2.3.2;3.2 Correlation Functions;18
2.3.3;3.3 Ambiguity Functions;20
2.3.4;3.4 Convolution and Correlation;22
2.3.5;3.5 Optimal Correlation, DFT, and Ambiguity;22
2.4;4 Polyphase Sequences for Three Metrics;23
2.4.1;4.1 Sequences from the Additive Group of ZN and the Additive Group of Zp;23
2.4.1.1;4.1.1 Frank-Zadoff-Chu (FZC) Sequences;23
2.4.1.2;4.1.2 Another Class for Zn;25
2.4.1.3;4.1.3 Sequences from Fp Additive Characters;25
2.4.2;4.2 Sequences from Fp Multiplicative Characters;25
2.4.3;4.3 Sequences from Fq Additive Characters;27
2.4.4;4.4 Sequences from Fq Multiplicative Characters;29
2.4.5;4.5 Sequences Defined by Indexing Field Elements Alternatively;32
2.5;5 Sequences with Low Degree Polynomials;34
2.5.1;5.1 Methods for Generating Signal Sets from a Single Sequence;34
2.5.2;5.2 Sequences with Low Odd Degree Polynomials;35
2.5.2.1;5.2.1 Fq Additive Sequences with Low Odd Degree Polynomials;35
2.5.2.2;5.2.2 Fq Multiplicative Sequences with Low Odd Degree Polynomials;37
2.5.3;5.3 Sequences from Power Residue and Sidel’nikov Sequences;38
2.5.3.1;5.3.1 Interleaved Structure of Sidel’nikov Sequences;38
2.5.3.2;5.3.2 Sequences from Linear and/or Quadratic/Inverse Polynomials;39
2.5.4;5.4 Sequences from Hybrid Characters;41
2.5.4.1;5.4.1 Sequences Using Weil Representation and Their Generalizations;41
2.5.4.2;5.4.2 Generalization to Fq Hybrid Sequences;42
2.5.5;5.5 A New Construction;44
2.6;6 Two-Level Autocorrelation Sequences and Double Exponential Sums;45
2.6.1;6.1 Prime Two-Level Autocorrelation Sequences;45
2.6.2;6.2 Hadamard Transform, Second-Order Decimation-Hadamard Transform, and Hadamard Equivalence;46
2.6.3;6.3 Conjectures on Ternary 2-Level Autocorrelation Sequences;47
2.7;7 Some Open Problems;49
2.7.1;7.1 Current Status of the Conjectures on Ternary 2-Level Autocorrelation;49
2.7.2;7.2 Possibility of Multiplicative Sequences with Low Autocorrelation;50
2.7.3;7.3 Problems in Four Alternative Classes of Sequences and the General Hybrid Construction;50
2.8;8 Conclusions;50
3;Measures of Pseudorandomness;55
3.1;1 Introduction;55
3.2;2 Definition of the Pseudorandom Measures;56
3.3;3 Typical Values of Pseudorandom Measures;58
3.4;4 Minimum Values of Pseudorandom Measures;59
3.5;5 Connection between Pseudorandom Measures;61
3.6;6 Constructions;62
3.7;7 Family Measures;64
3.8;8 Linear Complexity;66
3.9;9 Multidimensional Theory;68
3.10;10 Extensions;69
4;Existence Results for Finite Field Polynomials with Specified Properties;77
4.1;1 Introduction;77
4.2;2 A Survey of Known Results;78
4.2.1;2.1 Normal Bases;79
4.2.2;2.2 Primitive Normal Bases;80
4.2.3;2.3 Prescribed Coefficients;82
4.2.4;2.4 Primitive Polynomials: Prescribed Coefficients;82
4.2.5;2.5 Primitive Normal Polynomials: Prescribed Coefficients;85
4.3;3 A Survey of Methodology and Techniques;87
4.3.1;3.1 Basic Approach;88
4.3.2;3.2 A p-adic Approach to Coefficient Constraints;90
4.3.3;3.3 The Sieving Technique;93
4.4;4 Conclusion;95
5;Incidence Structures, Codes, and Galois Geometries;101
5.1;1 Introduction;101
5.2;2 Galois Closed Codes;103
5.3;3 Extension Codes of Simplex and First-Order Reed-Muller Codes;105
5.4;4 Simple Incidence Structures and Their Codes;109
5.5;5 Embedding Theorems;111
5.6;6 Designs with Classical Parameters;117
5.7;7 Two-Weight Codes;120
5.8;8 Steiner Systems;121
5.9;9 Configurations;123
5.10;10 Conclusion and Open Problems;125
6;Special Mappings of Finite Fields;129
6.1;1 Introduction;129
6.2;2 Different Notions for Optimal Non-linearity;132
6.2.1;2.1 Almost Perfect Nonlinear (APN) Mappings;133
6.2.2;2.2 Bent and Almost Bent (AB) Mappings;136
6.3;3 Functions with a Linear Structure;137
6.4;4 Crooked Mappings;140
6.5;5 Planar Mappings;142
6.6;6 Switching Construction;145
6.7;7 Products of Linearized Polynomials;149
7;On The Classification of Perfect Nonlinear (PN) and Almost Perfect Nonlinear (APN) Monomial Functions;157
7.1;1 Introduction;157
7.2;2 Background and Motivation;158
7.2.1;2.1 PN and Planar Functions;158
7.2.2;2.2 APN Functions;160
7.3;3 Outline of APN Functions Classification Proof;161
7.3.1;3.1 Singularities in APN case;163
7.3.2;3.2 A Warm-Up Case;165
7.4;4 PN Functions Classification Proof: Analysis of Singularities;166
7.4.1;4.1 Singular Points in Case (b.1);168
7.4.2;4.2 Singular Points at Infinity;169
7.4.3;4.3 The Multiplicities;171
7.4.4;4.4 Further Analysis;171
7.4.5;4.5 Type(i);173
7.4.6;4.6 Type(iii);173
7.4.7;4.7 Type(ii);173
7.5;5 Case (b.1): Assuming Bt(x,y) Irreducible over Fp;174
7.6;6 Case (b.1): Assuming Bt (x, y) not Irreducible over Fp;176
8;Finite Fields and Quasirandom Points;181
8.1;1 Introduction;181
8.2;2 General Background;182
8.3;3 General Construction Principles;185
8.4;4 The Combinatorics of Nets;189
8.5;5 Duality Theory;191
8.6;6 Special Constructions of Nets;193
8.6.1;6.1 Polynomial Lattices;193
8.6.2;6.2 Hyperplane Nets;195
8.6.3;6.3 Nets Obtained from Global Function Fields;197
8.7;7 Special Constructions of (T,s)-Sequences;199
8.7.1;7.1 Faure Sequences and Niederreiter Sequences-c;200
8.7.2;7.2 Sequences Obtained from Global Function Fields;201
8.7.3;7.3 Sequences with Finite-Row Generating Matrices;204
9;Iterations of Rational Functions: Some Algebraic and Arithmetic Aspects;209
9.1;1 Introduction;209
9.1.1;1.1 Background;209
9.1.2;1.2 Notation;210
9.1.3;1.3 Iterations;210
9.2;2 Distribution of Elements, Degree Growth and Representation;211
9.2.1;2.1 Exponential Sums and Linear Combinations of Iterates;211
9.2.2;2.2 Generic Multivariate Polynomials;213
9.2.3;2.3 Systems with Slow Degree Growth;215
9.2.4;2.4 Exponential Degree Growth, but Sparse Representation;218
9.2.5;2.5 Representation of Iterates;219
9.2.6;2.6 Deligne and Dwork-Regular Polynomials;220
9.2.7;2.7 Distribution in Prime and Polynomial Times;221
9.3;3 Structure of Rational Function Maps;222
9.3.1;3.1 Trajectory Length and Periodic Structure;222
9.3.2;3.2 Graph of Rational Function Maps;224
9.3.3;3.3 Common Composites and Intersection of Orbits;225
9.4;4 Geometric Properties of Orbits;227
9.4.1;4.1 Diameter of Orbits;227
9.4.2;4.2 Convex Hull of Trajectories;229
9.5;5 Stability, Absolute Irreducibility and Coprimality;229
9.5.1;5.1 Motivation;229
9.5.2;5.2 Stable Univariate Polynomials;230
9.5.3;5.3 On the Growth of the Number of Irreducible Factors;232
9.5.4;5.4 Stable Multivariate Polynomials;234
9.5.5;5.5 Coprimality of Iterates;236
9.6;6 More Problems;236
9.6.1;6.1 Multiplicative Independence;236
9.6.2;6.2 Complete Polynomials;237
10;Additive Combinatorics over Finite Fields: New Results and Applications;245
10.1;1 Introduction;245
10.2;2 Notation;247
10.3;3 Estimates from Arithmetic Combinatorics;248
10.3.1;3.1 Classical Sum-Product Problem;248
10.3.2;3.2 Multifold Sum-Product Problem;250
10.3.3;3.3 Sum-Inversion Estimates;251
10.3.4;3.4 Equations over Finite Fields with Variables from Arbitrary Sets;253
10.3.5;3.5 Incidence Bounds;255
10.3.6;3.6 Polynomial and Other Nonlinear Functions on Sets;257
10.3.7;3.7 Structured Sets;259
10.3.8;3.8 Elliptic Curve Analogues;261
10.3.9;3.9 Matrix Analogues;264
10.4;4 Applications;265
10.4.1;4.1 Exponential and Character Sums;265
10.4.2;4.2 Waring, Erdos-Graham and Other Additive Problems in Finite Fields;268
10.4.3;4.3 Intersections of Almost Arithmetic and Geometric Progressions;270
10.4.4;4.4 Exponential Congruence;272
10.4.5;4.5 Hidden Shifted Power Problem;273
10.4.6;Sum-Product Estimates and Multiplicative Orders of . and . + .-1 in Finite Fields;273
10.4.7;4.7 Expansion of Dynamical Systems;274


Pascale Charpin, INRIA, Le Chesnay, France; Alexander Pott, Otto-von-Guericke-University Magdeburg, Germany; Arne Winterhof, Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.