Chen | Nonlocal Euler–Bernoulli Beam Theories | E-Book | sack.de
E-Book

E-Book, Englisch, 59 Seiten, eBook

Reihe: SpringerBriefs in Continuum Mechanics

Chen Nonlocal Euler–Bernoulli Beam Theories

A Comparative Study
1. Auflage 2021
ISBN: 978-3-030-69788-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Comparative Study

E-Book, Englisch, 59 Seiten, eBook

Reihe: SpringerBriefs in Continuum Mechanics

ISBN: 978-3-030-69788-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents a comparative study on the static responses of the Euler-Bernoulli beam governed by nonlocal theories, including the Eringen’s stress-gradient beam theory, the Mindlin’s strain-gradient beam theory, the higher-order beam theory and the peridynamic beam theory. Benchmark examples are solved analytically and numerically using these nonlocal beam equations, including the simply-supported beam, the clamped-clamped beam and the cantilever beam. Results show that beam deformations governed by different nonlocal theories at different boundary conditions show complex behaviors. Specifically, the Eringen’s stress-gradient beam equation and the peridynamic beam equation yield a much softer beam deformation for simply-supported beam and clamped-clamped beam, while the beam governed by the Mindlin’s strain-gradient beam equation is much stiffer. The cantilever beam exhibits a completely different behavior. The higher-order beam equation can be stiffer or softer depending on thevalues of the two nonlocal parameters. Moreover, the deformation fluctuation of the truncated order peridynamic beam equation is observed and explained from the singularity aspect of the solution expression. This research casts light on the fundamental explanation of nonlocal beam theories in nano-electromechanical systems.
Chen Nonlocal Euler–Bernoulli Beam Theories jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Eringen’s nonlocal beam theories.- Peridynamic beam theory.- Analytical solution to benchmark examples.- Numerical solution to integral-form peridynamic beam equation.- Conclusion.


Dr. Jingkai Chen is currently the instructor (tenure track) at China University of Petroleum (East China). He got his Ph.D degree from Rice University supervised by Prof. Pol D. Spanos. His research interests are drilling engineering, stochastic mechanics and peridynamics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.