Buch, Englisch, 272 Seiten, Format (B × H): 183 mm x 257 mm, Gewicht: 635 g
Principles and Applications
Buch, Englisch, 272 Seiten, Format (B × H): 183 mm x 257 mm, Gewicht: 635 g
ISBN: 978-1-118-84890-6
Verlag: Wiley
Discover a comprehensive look at the principles and applications of microsystem dynamics
Microsystems or microelectromechanical systems (MEMS) are miniaturized devices with components measured in micrometers that perform micro- to nanometer scale electronic machine functions such as actuations. Since research and industrial production in recent decades has generated considerable knowledge of microsystem dynamics, there is an urgent need for a single guide which combines microsystem theory with practical applications to provide a general framework.
Microsystem Dynamics fills this need, with the first single-volume overview of its kind. It presents the fundamental principles of microsystem dynamics in a unified theoretical framework, engineered to govern both analysis and design. Its discussion of applications includes cutting-edge methods for applying non-stationary, stochastic, non-linear dynamics and multi-physics of microsystems. Fully engaged with the latest research, this promises to be the essential single-volume introduction to its subject.
Microsystem Dynamics readers will find: - Discussion of advanced tools such as nonlinear signal processing, computational intelligence, and nonlinear chaos dynamics
- An authorial team with extensive experience in both academic and industrial research
- Analysis of stability and durability factors in dynamical microsystems
Microsystem Dynamics is a useful reference for researchers and practitioners working in microscale engineering, as well as graduate students in mechanical, automotive, and electrical engineering.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Nichtlineare Wissenschaft
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau Mechatronik, Mikrosysteme (MEMS), Nanosysteme
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Statik, Dynamik, Kinetik, Kinematik
Weitere Infos & Material
Preface vii
1 Introduction 1
1.1 Definition of Microsystem, Vibrations and Dynamics 1
1.2 Engineering and Scientific Significance of Microsystem Dynamics 2
1.3 Organization of the Book 4
2 Vibrations and Dynamics 7
2.1 Introduction 7
2.2 Vibration of Linear System Under Deterministic Excitations 7
2.2.1 Vibration of Linear Discrete and Continuous Systems 7
2.2.2 Vibration of Linear Discrete Systems: Single-degree-of-freedom System 8
2.2.3 Vibrations of Linear Discrete Systems: Multiple-degree-of-freedom System 12
2.2.3.1 Eigenvalues and Eigenvectors 13
2.2.3.2 Forced Vibration Solution of an MDOF System 15
2.2.4 Vibrations of Continuous Systems 16
2.2.4.1 Transverse Vibrations of String and Wave Equation 16
2.2.4.2 Longitudinal Vibration of Rods and Torsional Vibration of Shafts 20
2.2.4.3 Transverse Vibration of Beams 21
2.3 Random Vibrations Under Deterministic Excitations 24
2.3.1 Probability Density, Autocorrelation, and Power Spectral Density Function 25
2.3.2 Response of an SDOF System to an Arbitrary Function Input 27
2.3.3 Power Spectral Density Function 29
2.3.4 Joint Probability Density Function and Cross-correlation Function 30
2.3.5 Response of Linear Dynamic System to a Random Input 32
2.4 Nonlinear Vibrations 35
2.4.1 Perturbation Method, Duffing Equation 35
2.4.2 Amplitude Frequency-dependent and Jump Phenomenon 39
2.4.3 Van der Pol's equation 39
2.4.4 Method of Variation of Parameter 40
2.4.5 Phase Plot, Limit Cycles, Self-excited Oscillations, and Chaos 41
2.4.6 Stability of Equilibrium 43
2.4.7 Parametrically Excited System and Mathieu's Equation 46
2.4.8 Transient and Nonstationary Vibrations 48
2.4.9 Multi-degree-of-freedom Systems 48
2.5 Advanced Dynamics 49
2.5.1 Kinematics of Rigid Body 49
2.5.2 Linear and Angular Momentums of Rigid Body 58
2.5.3 Euler Equations of Rigid Body 59
2.5.4 Lagrange Equations 60
3 Surface Forces and Interface Interactions 65
3.1 Introduction 65
3.2 Contact Between Two Solid Surfaces 65
3.2.1 Description of Surfaces 65
3.2.2 Contact Mechanics of Two Solid Surfaces 67
3.3 Forces Between Two Solid Surfaces 72
3.3.1 Adhesion 72
3.3.1.1 Solid-Solid Adhesion 72
3.3.1.2 Liquid-mediated Adhesion 76
3.3.2 Friction 79
3.3.3 Nanoscale Contact and Friction 84
4 Nanoscale Dynamics of Air-bearing Slider in Computer Hard Disk Drives 99
4.1 Introduction 99
4.1.1 Modern Hard Disk Drive 99
4.1.2 Head-disk Interface 99
4.1.3 Microsystem-based Active Slider Technology 101
4.2 Dynamics of ABS in Sub-5-nm Clearance Regime 104
4.2.1 Nonlinear Dynamics of Slider in Sub-5-nm Clearance Regime 104
4.2.2 Multiple Interface Forces and System Modeling 106
4.2.2.1 Air-bearing Slider Contact Model 108
4.2.2.2 Intermolecular Force 110
4.2.2.3 Electrostatic Force 111
4.2.2.4 Meniscus Forces 114
4.2.3 Nonlinear Dynamics Due to Nonlinear Air-bearing Stiffness and Vibro-impact 115
4.3 Microsystem-based Active Slider Dynamics 119
4.3.1 Microsystem-based Active Thermal Flying-height Control Slider 119
4.3.2 Nanoscale Dynamics Sensing, Identification and Diagnosis 134
4.3.3 Active Control of Microsystem-based-slider Vibrations 147
4.3.4 Characterization of Dynamic Performance of Lubricant in Head-Disk Interface Using Molecular Dynamics 161
5 Microdynamics of Lithium-ion Batteries 177
5.1 Multiscale Systems in Lithium-ion Batteries 177
5.1.1 Modern Lithium-ion Batteries 177
5.1.2 Multiscale Characterizations of LIBs 177
5.2 Microstructure and Microstructural Dynamics of LIBs 180
5.2.1 Microstructure and Multiphysics System 180
5.2.2 Modeling of Dynamics of LIBs 186
5.2.2.1 Equivalent Circuit Models 187
5.2.2.2 Electrochemical Model 189
5.2.3 Microstructural Dynamics of Particles in LIBs 191
5.3 Acoustic Emission Diagnosis of Microscale Damages of LIBs 196
5.3.1 Detection of Damages in LIBs Using AE Testing 196
5.3.2 Evaluation of Microcracking in LIBs 197
5.3.3 Diagnosis and Identification of Microscale Damages of LIBs 202
6 Dynamics of Actuator in Microsystems 213
6.1 Introduction 213
6.2 MEMS Actuators 213
6.2.1 Structures of MEMS Actuators 213
6.2.2 Electrostatically and Thermally Actuated Devices 213
6.3 Modeling MEMS Structure and Solution 219
6.4 Effects of Surface Forces and Surface Roughness on MEMS Actuators 226
6.5 System Control of MEMS Actuators and Nonlinear Analysis 233
6.6 Research and Development of Emerging MEMS 242
References 253
Index 259