E-Book, Englisch, 905 Seiten, eBook
Chiru / Ispas CONAT 2016 International Congress of Automotive and Transport Engineering
1. Auflage 2017
ISBN: 978-3-319-45447-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 905 Seiten, eBook
ISBN: 978-3-319-45447-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Scientific Committee;7
3;Contents;9
4;Advanced Engineering Methods;18
5;Novel Simulation Methodology for the Estimation of the Flow Mark Risk Associated with the Injection of Mass Colored Plastic Materials;19
5.1;Abstract;19
5.2;1 Introduction;19
5.3;2 Aluminum Pigments and the Metallic Effect;21
5.4;3 Local Flow Perturbations at the Source of Flow Marks;22
5.4.1;3.1 Developed Flow Zone – Wall Proximity;22
5.4.2;3.2 Developed Flow Zone – Core Zone;23
5.4.3;3.3 Fountain Flow Zone Role for the Generation of Flow Marks;24
5.5;4 Simulation Model and Correlation;25
5.5.1;4.1 The Model;25
5.5.2;4.2 The Study Case;25
5.5.3;4.3 Simulation Results and Correlation with Experiment;27
5.6;5 Conclusions;30
5.7;Acknowledgments;31
5.8;References;31
6;Numerical and Experimental Investigations of a Twin Sheet Thermoplastic Structure with Rectangular Frusta;33
6.1;Abstract;33
6.2;1 Introduction;33
6.3;2 Experimental Investigation of the Twin Sheet Structures;34
6.4;3 Numerical Investigation of Twin Sheet Thermoplastic Structures;37
6.5;4 Parametric Analysis;39
6.6;5 Conclusions;40
6.7;References;41
7;Expanded Polypropylene Finite Elements Analysis in Transport Application;42
7.1;Abstract;42
7.2;1 Introduction;42
7.3;2 Expanded Polypropylene;43
7.3.1;2.1 Applications;43
7.3.2;2.2 Properties and Behavior;43
7.4;3 Material Testing;44
7.4.1;3.1 Test Set-up and Results;44
7.5;4 Curve Fitting and Validation of Material Model;45
7.5.1;4.1 Curve Fitting of Material Model;46
7.5.2;4.2 Validation of Material Model;47
7.6;5 Finite Elements Analysis;48
7.6.1;5.1 Material Properties, Meshing and Boundary Conditions;48
7.6.2;5.2 Results;48
7.7;6 Conclusions;49
7.8;References;50
8;Functional Description and Design Aspects of Hybrid Transmissions;52
8.1;Abstract;52
8.2;1 Introduction;52
8.3;2 Generalization from Non-hybrid to Hybrid Modes;54
8.4;3 Examples of Graphical Representations for Operating Modes;55
8.4.1;3.1 P2-Double-Clutch-Transmission (DCT);55
8.4.2;3.2 DCT with Integrated Hybrid;56
8.4.3;3.3 P3-DCT;57
8.4.4;3.4 Integrated AT-Hybrid with Several Modes and e-CVT;57
8.5;4 Operating Mode Transitions;58
8.6;5 Design Aspects;59
8.7;6 Clutches/Brakes and Their Dimensioning;59
8.7.1;6.1 Short Shifting Components;60
8.7.2;6.2 Bearings;61
8.7.3;6.3 On-demand Actuation;61
8.8;7 Summary;62
8.9;References;62
9;Comparative Study on the Performances of Aerodynamic Devices Used in Decreasing of the Automobiles Lift Force;64
9.1;Abstract;64
9.2;1 Introduction;64
9.3;2 Experimental Setup;65
9.4;3 Results and Discussions;67
9.5;4 Conclusions;69
9.6;References;69
10;Analysis of the Influence of the Drive Force Distribution Between Axles on an Automobile Stability in Its Curvilinear Motion;71
10.1;Abstract;71
10.2;1 Introduction;71
10.3;2 Vehicle Model;72
10.4;3 Under- and Oversteer According to ISO Standard;73
10.5;4 Tires Characteristics;75
10.6;5 Investigation of Influence of Drive Force Distribution on Vehicle Handling;76
10.7;6 Conclusions;78
10.8;References;78
11;About the Steering Kinematics of the Road Trains;80
11.1;Abstract;80
11.2;1 Vehicle Steering;80
11.3;2 Importance of the Research Theme;82
11.4;3 Road Trains;82
11.5;4 Steering Kinematics;84
11.6;5 Algorithm Implementation and Results;88
11.7;6 Conclusions;89
11.8;References;89
12;Evaluation by Experimental Methods of the Parameters that Influence the Behavior of Various Passenger Cars Classes in the Braking Process;91
12.1;Abstract;91
12.2;1 Introduction;91
12.3;2 The Experimental Determination of the Parameters that Influence the Behavior of the Cars in the Braking Process;92
12.4;3 Conclusions;98
12.5;References;98
13;Evaluation of the Behavior in Cornering for Different Classes of Passenger Cars by Numerical Modeling;99
13.1;Abstract;99
13.2;1 Introduction;99
13.3;2 Determination of the Distributed Masses on the Car Axles for Different Loads;100
13.4;3 The Numerical Evaluation Method;100
13.5;4 Obtained Results;102
13.6;5 Conclusions;104
13.7;References;104
14;Structural Dynamic Applications Using Principal Component Analysis Method;106
14.1;Abstract;106
14.2;1 Introduction;106
14.3;2 Deterministic Versus Random Loads;107
14.4;3 Road Noise Principal Component Analysis (PCA);108
14.5;4 Road Noise Reduction Using Source Decomposition and Panel Contribution Analysis;110
14.5.1;4.1 Road Load Source Decomposition Process;110
14.5.2;4.2 Panel Contribution Analysis Process;112
14.6;5 Conclusions;113
14.7;References;115
15;Weight Optimization of Existing Transmission Housing for Heavy Duty Commercial Vehicles Using Correlated Simulation and Experimental Tools;116
15.1;Abstract;116
15.2;1 Introduction;116
15.3;2 Topology Optimization;117
15.4;3 Process Implementation;118
15.5;4 FE Modelling;119
15.6;5 PGAP Elements;119
15.7;6 Activating Non-linear Solution (NLPARM);120
15.8;7 Structural Analysis;120
15.9;8 Static Analysis Results;121
15.10;9 Experimental Verification;123
15.11;10 Conclusions;124
15.12;Acknowledgments;125
15.13;References;125
16;New Approaches in Designing a Race Car Chassis for an Engineering Competition;126
16.1;Abstract;126
16.2;1 Introduction;126
16.3;2 Problem Definition;127
16.4;3 Methods and Materials;128
16.5;4 Results;131
16.5.1;4.1 Linear Braking;131
16.5.2;4.2 Optimization;132
16.6;5 Conclusions;134
16.7;Acknowledgements;135
16.8;References;135
17;Presentation of Tests with a Dynamometer Related to the Determination of Fuel Consumption in the NEDC and WLTC Driving Cycles and as Well Related to the Dynamic Behavior of Vehicles;136
17.1;Abstract;136
17.2;1 Introduction;136
17.3;2 Presentation of the Dynamometer;137
17.4;3 Consumption Measurement;139
17.4.1;3.1 NEDC (New European Drive Cycle) Und WLTC/WLTP (Worldwide Harmonized Light Vehicle Test Cycle/Test Procedure);139
17.4.2;3.2 Method of Measurement of the Fuel Consumption Driving the Test Vehicle;140
17.5;4 Determination of the Maximum Acceleration;142
17.6;5 Slippage at the Drive Wheels;142
17.7;6 Conclusion;143
17.8;References;143
18;Validation Procedure for Worldwide Harmonized Light Vehicles Test Cycle via Hardware in the Loop - Real Time Testing;144
18.1;Abstract;144
18.2;1 Introduction;144
18.3;2 Materials and Methods;145
18.3.1;2.1 Experimental Test Bed;145
18.3.2;2.2 Model in the Loop;146
18.3.3;2.3 Software in the Loop;147
18.3.4;2.4 Model Implementation;148
18.3.5;2.5 Hardware in the Loop;149
18.4;3 Conclusions;151
18.5;References;151
19;Experimental Investigation of a Vehicle Behavior Using Different Complex Data Acquisition Systems;152
19.1;Abstract;152
19.2;1 Introduction;152
19.3;2 Experimental Setup;153
19.3.1;2.1 MAHA Dynamometer Stand;153
19.3.2;2.2 OP-COM Interface;154
19.4;3 Results and Discussion;155
19.5;4 Conclusion;159
19.6;References;159
20;Validation of Kinematic Simulation of Sprocket Contacts of Chain Links by Experiments;160
20.1;Abstract;160
20.2;1 Introduction;160
20.3;2 Experimental Approach;161
20.4;3 Numerical Simulation;163
20.5;4 Correlation Between the Experimental Approach and the Numerical Simulation;165
20.6;5 Conclusions;166
20.7;References;167
21;Belt Losses Evaluation for a Push-Belt CVT;168
21.1;Abstract;168
21.2;1 Introduction;168
21.3;2 Virtual Development Methodology;169
21.3.1;2.1 The Transmission;169
21.3.2;2.2 The Simulation Model;171
21.3.3;2.3 The Heat Exchange;173
21.4;3 Simulation Results;174
21.5;4 Conclusions;175
22;Kinematic and Dynamic Study of a Mechanism for a Vehicle Front and Rear Stabilizer Bars;177
22.1;Abstract;177
22.2;1 Introduction;177
22.3;2 Experimental Setup;178
22.4;3 Rear Stabilizer Bar Test Bed Elasto-Dynamic Analysis;179
22.4.1;3.1 Mathematical Modeling;179
22.4.2;3.2 Numerical Simulations;180
22.5;4 Experimental Analysis of a Rear Axle Stabilizer Bar;182
22.6;5 Conclusions;184
22.7;References;184
23;Methods for Modeling an Elastic System with Permanent Contour Coupling Deformation;186
23.1;Abstract;186
23.2;1 Introduction;186
23.3;2 Modeling the Coupling Elastic Structure;187
23.3.1;2.1 Structure of Cylindrical Articulate Beams (Rotation Is Permitted), Fig. 2;188
23.3.2;2.2 Structure of Fixed Beams, Fig. 3;189
23.4;3 Conclusion;193
23.5;References;193
24;Reinvestigation of the Electromagnetic Valve Train (EMVT) Technology via Multidomain Simulation;194
24.1;Abstract;194
24.2;1 Introduction;194
24.3;2 Basic Principles of a Spring Mass System Based EMVT;195
24.4;3 Simulation method;197
24.4.1;3.1 Simulation of the mechanical and electrical system;197
24.4.2;3.2 Magnetic field simulation;198
24.4.3;3.3 Gas force analysis;198
24.4.4;3.4 Controller simulation;199
24.5;4 Simulation results;201
24.6;5 Summary;202
24.7;References;202
25;Study on Mixture Formation at an Experimental Spark Ignition Engine;203
25.1;Abstract;203
25.2;1 Introduction;203
25.3;2 Prerequisites for Testing and Simulation;204
25.4;3 Experiments on Single-Cylinder Spark Ignition Engine;205
25.5;4 Mixture Formation Prediction Through CFD Trials;207
25.5.1;4.1 Prerequisites for the CFD Analysis;207
25.5.2;4.2 Preliminary Results;208
25.6;5 Conclusions and Future Work;209
25.7;Acknowledgements;210
25.8;References;210
26;Aspects Concerning Modeling of Combustion for Compression Ignition Engine with Injection Management;211
26.1;Abstract;211
26.2;1 Introduction;211
26.3;2 Application Requirements;212
26.4;3 Experimental Compression Ignition Single Cylinder Testing;213
26.4.1;3.1 Evaluation of In-Cylinder Processes;214
26.4.2;3.2 Simulation;216
26.5;4 Conclusions and Future Work;217
26.6;References;218
27;Comparative Study on the Performances of the One-Way Hydraulic Valves;219
27.1;Abstract;219
27.2;1 Introduction;219
27.3;2 State of the Art and Application Requirements;220
27.4;3 CFD Simulation Models for the Proposed One-Way Valves;221
27.4.1;3.1 Simulation Methodology;221
27.4.2;3.2 Ball Check Valve and Spring Valve;222
27.4.3;3.3 Reed Valve;223
27.5;4 Conclusions;224
27.6;Acknowledgements;224
27.7;References;224
28;Estimation of Boiling Points of Brake Fluids;225
28.1;Abstract;225
28.2;1 Introduction;225
28.3;2 Experimental Section;226
28.3.1;2.1 Materials and Methods;226
28.3.2;2.2 Used Apparatus;226
28.4;3 Results and Discussion;227
28.5;4 Conclusions;231
28.6;References;231
29;Modelling and Optimization of Constructive Form for GO-NOGO Exterior and Interior Diameter Gauges;233
29.1;Abstract;233
29.2;1 Introduction;233
29.3;2 Actual Principles for Selection of Methods and Instruments for Control of Product Quality;234
29.4;3 Finite Element Modelling for Interior and Exterior Diameter Gauges;234
29.5;4 Constructive Form Optimization for Exterior Diameter Gauge in Order to Reduce the Thermal Expansion;239
29.6;5 Conclusions;241
29.7;References;242
30;Systems Engineering Requires Digital Twins of Machine Elements;243
30.1;Abstract;243
30.2;1 Introduction;243
30.3;2 The Virtual Twin of a Machine Element;244
30.4;3 Model Based Systems Engineering;246
30.5;4 Conclusions;248
30.6;References;249
31;Collaborative Design and Use of Interactive Simulations: Boost the Learning Environment in Road Vehicle Dynamics Curriculum;250
31.1;Abstract;250
31.2;1 Introduction;250
31.3;2 Simulation Studies of Coast-Down Testing;251
31.3.1;2.1 Learning Outcome: Coast-Down Simulation;251
31.3.2;2.2 Background: Theory of Coasting Vehicle;251
31.3.3;2.3 Simulation Methodology and Analysis;253
31.4;3 Simulation Studies of Brake Proportioning System;253
31.4.1;3.1 Learning Outcomes: Brake Proportioning Simulation and FMVSS 105;254
31.4.2;3.2 Background: Theory of Brake Proportioning;254
31.4.3;3.3 Simulation Methodology and Analysis;254
31.5;4 Simulation Studies of Driver-in-the-Loop;256
31.5.1;4.1 Learning Outcomes: Simulation Studies of Driver-in-the-Loop;256
31.5.2;4.2 Background: Driver-in-the-Loop;256
31.5.3;4.3 Simulation Methodology and Analysis;257
31.6;5 Conclusion;257
31.7;References;257
32;Experimental Researches on the Magneto-Rheological Dampers Response to the Control Parameters;259
32.1;Abstract;259
32.2;1 Introduction;259
32.3;2 Test Bench Presentation;261
32.4;3 Experimental Results;262
32.5;4 Conclusions;265
32.6;References;265
33;Innovative Solution for Motor Vehicles;267
34;Contributions in Experimental Research Concerning Diesel Fuel Supply and Lubrication in the Case of Comparative Study Between Euro V and IV Common Rail Engines;268
34.1;Abstract;268
34.2;1 Introduction;268
34.3;2 State of the Art Systems and Methods;269
34.3.1;2.1 Studies About Fuel Consumption and Lubrication;269
34.3.2;2.2 Mathematical Equations Related to the Fuel Consumption;271
34.4;3 Materials and Method;271
34.4.1;3.1 Conventional Methods Applied in Fuel Consumption Investigation;271
34.4.2;3.2 Materials and Test Procedures;272
34.5;4 Study of the Experimental Testing Results;275
34.6;5 Conclusion;278
34.7;Acknowledgement;278
34.8;References;278
35;Experimental Research Regarding the Possibility of Biofuel Fumigation Supply Method on a Single Cylinder Compression Ignited Engine;279
35.1;Abstract;279
35.2;1 Introduction;279
35.3;2 State of the Art Technology Available in the Research Field;280
35.3.1;2.1 Studies About Fuels and Biofuels Close Related to Research Field;280
35.3.2;2.2 Relevant Studies Concerning Fumigation Method Applied in Diesel Engines;281
35.3.3;2.3 Mathematical Equations;283
35.3.4;2.4 State of the Art Research Technology Availableat Technical University;283
35.4;3 Materials and Method;284
35.4.1;3.1 Test Bench Components and Materials;284
35.4.2;3.2 Method of Investigation;284
35.4.3;3.3 Test Procedures;285
35.5;4 Analyze of the Experimental Results;286
35.5.1;4.1 Engine Torque and Speed Measurement;286
35.5.2;4.2 Engine Parameters on Graphic Charts;286
35.6;5 Conclusion;287
35.7;Acknowledgements;288
35.8;References;288
36;Study on a Stratified Charge Spark Ignition Automotive Engine;289
36.1;Abstract;289
36.2;1 Introduction;289
36.3;2 The Constructive Solution;290
36.4;3 Experimental Tests;294
36.5;4 Experimental Results;295
36.6;5 Conclusions;300
36.7;References;301
37;Researches on Cooling Air Flow Control Devices Using on Cars with Internal Combustion Engines;302
37.1;Abstract;302
37.2;1 Introduction;302
37.3;2 Experimental Method;303
37.4;3 Experimental Data;305
37.5;4 Analysis of Experimental Data;308
37.6;5 Conclusions;308
37.7;References;309
38;Modeling the Energy Evaluation for an Electric Machine;310
38.1;Abstract;310
38.2;1 Introduction;310
38.3;2 Modeling and Simulation;311
38.3.1;2.1 The Electric Machine Functional Model;311
38.3.2;2.2 The Electric Machine Thermal Model;313
38.3.3;2.3 The Electric Machine Simulation Model;315
38.4;3 Simulation Results;315
38.5;4 Conclusions;317
38.6;References;318
39;Balancing of a Single Stage Reciprocating Compressor with Elastic Elements;320
39.1;Abstract;320
39.2;1 Introduction;320
39.3;2 Multibody Model;321
39.3.1;2.1 Dynamics;321
39.4;3 Results;322
39.5;4 Conclusions;324
39.6;References;325
40;The Calculation Algorithm for the Determination of the Temperature at the End of the Intake Stroke for GDI Engines;326
40.1;Abstract;326
40.2;1 Introduction;326
40.3;2 The Operational Scheme of the Proposed Propulsion System;327
40.4;3 Conclusions;332
41;Diagnosing the Operation of a Locomotive Diesel Engine Based on the Analysis of Used Oil in the Period Between Two Technical Revisions;334
41.1;Abstract;334
41.2;1 Introduction;334
41.3;2 Monitoring on Lubricating Oil – Case Study on DHLe;335
41.4;3 Chemico - Physical Characterization of Oil;336
41.4.1;3.1 Viscosity;336
41.4.2;3.2 Flash Point and Dilution;337
41.4.3;3.3 Density;338
41.4.4;3.4 Water Content;338
41.4.5;3.5 Determination of Oil Degradation - Oil Stain Analysis;339
41.4.6;3.6 Metal Analysis X-Ray Fluorescence Spectrometry;340
41.5;4 Results and Discussion;340
41.6;5 Conclusions;341
41.7;References;342
42;Heavy and Special Vehicles;343
43;Simultaneous Influences of Tyre Pressure and Steering Geometry upon the Theoretical Speed Ratio in the Running Gear System of Four-Wheel Drive Tractors;344
43.1;Abstract;344
43.2;1 Mathematical Modelling of the Theoretical Speed Ratio in the Running Gear System of Four-Wheel Drive Tractors in a Straight Line Motion;344
43.3;2 Mathematical Modelling of Theoretical Speed Ratio in the Running Gear System of Four-Wheel Drive Tractors During Cornering;345
43.4;3 Effect of Theoretical Speed Ratio on the Slips of the Front and Rear Tyres of a Four-Wheel-Drive Tractor with Rigid Interaxial Coupling;347
43.5;4 Applications of the Mathematical Model Developed;347
43.6;5 Conclusions;350
43.7;References;351
44;Analysis of the Comfort of the Seats Used in Light Military Vehicles;352
44.1;Abstract;352
44.2;1 Introduction;352
44.3;2 The Stresses Transmitted to Seat;353
44.4;3 Data Analysis and the Influence Over Comfort;355
44.4.1;3.1 The Multidirectional Analysis of the Vibration;357
44.5;4 Conclusions;359
44.5.1;4.1 Research Directions for Improving Comfort;359
44.6;References;360
45;Aspects Regarding the Kinematic Optimization of a Tracked Military Vehicle’s Transmission;361
45.1;Abstract;361
45.2;1 Introduction;361
45.3;2 Intermediate Gear Drive Analysis by Simulating Its Work Within the General Simulation Model;362
45.4;3 Comparing the Data Obtained by Simulation;364
45.5;4 Conclusions;366
45.6;Acknowledgments;366
45.7;References;366
46;Automobile and Environment;367
47;Research on Gasoline Homogenous Charge Compression Ignition (HCCI) Engine;368
47.1;Abstract;368
47.2;1 Introduction;368
47.3;2 Gasoline HCCI;370
47.3.1;2.1 Principle of Engine Operation;370
47.3.2;2.2 Control of HCCI Combustion;371
47.4;3 Experimental Setup;373
47.5;4 Research Results;373
47.6;5 Conclusions;380
47.7;References;380
48;Study of the Diesel Engine Cycle Variability at LPG Fuelling;382
48.1;Abstract;382
48.2;1 Introduction;382
48.3;2 Cycle Variability Study;384
48.4;3 Results;385
48.5;4 Conclusions;388
48.6;Acknowledgements;388
48.7;References;389
49;Direct Injection of Diesel and Ethanol in a Diesel Engine - A Numerical Analysis;390
49.1;Abstract;390
49.2;1 Introduction;390
49.3;2 Methodology;390
49.4;3 Validation and Results;392
49.5;4 Conclusions;396
49.6;Acknowledgement;397
49.7;References;397
50;The Effects of a Diesel-Ethanol Blend Without Additives on Diesel Engine Operation;398
50.1;Abstract;398
50.2;1 Introduction;398
50.3;2 Methodology;399
50.4;3 Results;401
50.5;4 Conclusions;404
50.6;Acknowledgement;404
50.7;References;405
51;The Influence of Biodiesel on Engine Combustion and CO2 Emissions;406
51.1;Abstract;406
51.2;1 Introduction;406
51.3;2 Simulation Model;407
51.4;3 Experimental Equipment and Test Description;409
51.5;4 Results;410
51.6;5 Conclusions;412
51.7;References;413
52;Modeling the Performances of a Vehicle Provided with a Spark Ignition Engine Using a Double Energy Source, Gasoline and Liquefied Petroleum Gas;414
52.1;Abstract;414
52.2;1 Introduction;414
52.2.1;1.1 Description of the Model;415
52.3;2 Experimental;416
52.4;3 Results and Discussions;420
52.5;4 Conclusions;424
52.6;References;425
53;Modeling the Performances of a Vehicle Provided with a Hybrid Electric Diesel Propulsion System (HEVD);426
53.1;Abstract;426
53.2;1 Introduction;426
53.3;2 The Presentation of the Model;427
53.4;3 Results and Discussions;434
53.5;4 Conclusions;436
53.6;References;437
54;Aspects of Experimental Research on Hydrogen Fuelled Automotive Diesel Engine;438
54.1;Abstract;438
54.2;1 Introduction;438
54.3;2 Methodology of Experimental Investigation;439
54.4;3 Results;441
54.5;4 Conclusions;444
54.6;Acknowledgements;444
54.7;References;445
55;Researches on Combustion Quality for a Single Cylinder Diesel Engine;446
55.1;Abstract;446
55.2;1 Introduction;446
55.3;2 Combustion Quality Evaluation for Diesel Engines;446
55.4;3 Used Equipments;448
55.5;4 Research Methodology;449
55.6;5 Conclusions;451
55.7;Acknowledgements;452
55.8;References;452
56;Urban Transportation Solutions for the CO2 Emissions Reduction Contributions;453
56.1;Abstract;453
56.2;1 Introduction;453
56.3;2 The Analyzed Area;454
56.4;3 Energy Consumption and CO2 Mitigation Model for S?cele;455
56.4.1;3.1 Mathematical Model for S?cele Transportation System;455
56.4.2;3.2 Vehicle Fleet Renewal;457
56.4.3;3.3 Increasing the Average Travel Speed;457
56.4.4;3.4 Bicycle Lanes for S?cele;458
56.4.5;3.5 Students Mobility Management;459
56.5;4 Conclusions;459
56.6;Acknowledgements;460
56.7;References;460
57;Mission CO2 Reduction;462
57.1;Abstract;462
57.2;1 Introduction;462
57.3;2 Improving the Efficiency of the Powertrain and the Challenges to Be Overcome;463
57.4;3 Vibration Isolation – State of the Art;464
57.5;4 Alternative Solutions – Options and the Operating Principles That Define Them;465
57.6;5 Spring-mass System – Principle of the Dual-mass Flywheel;466
57.7;6 Anti-resonance – Principle of Interference;467
57.8;7 The Spring-mass Absorber;467
57.9;8 The Summation Damper;469
57.10;References;472
58;Experimental Research Concerning the Influence of the Electrochemical Reactions Induced by Products of an Electrolytic Cell Over the Emission Pollutants in ICE;473
58.1;Abstract;473
58.2;1 Introduction;473
58.3;2 Content;474
58.4;3 Hypothesis;476
58.5;4 The Experimental Unit;477
58.6;5 Test Results;478
58.7;6 Conclusions: “ECO” Maintenance System and Beyond;480
58.8;References;481
59;Energy-Based Approach to Model a Hybrid Electric Vehicle and Design Its Powertrain Controller and Energy Management Strategy;482
59.1;Abstract;482
59.2;1 Introduction;482
59.3;2 Powertrain Architecture;483
59.4;3 Powertrain Design and Model;483
59.4.1;3.1 Energetic Macroscopic Representation;483
59.4.2;3.2 EMR of the Studied Model;484
59.5;4 Powertrain Controller;486
59.5.1;4.1 Maximum Control Structure;486
59.5.2;4.2 MCS of the Studied Model;486
59.6;5 Energy Management Strategy;488
59.7;6 Results;489
59.8;7 Conclusion;490
59.9;Appendix A: Synoptic of Energetic Macroscopic Representation;491
59.10;References;491
60;Dynamic Control of an Electric Vehicle with Traction Induction Motor;493
60.1;Abstract;493
60.2;1 Introduction;493
60.3;2 Vehicle Propulsion Dynamics;494
60.3.1;2.1 Motion Forces;494
60.3.2;2.2 Traction Induction Motor;495
60.4;3 Dynamic Control of the Vehicle;496
60.4.1;3.1 Traction Control;496
60.4.2;3.2 Induction Motor Control;497
60.4.3;3.3 Vehicle Dynamics;498
60.5;4 Practical Results;499
60.6;5 Conclusions;500
60.7;References;501
61;A Propulsion System for Means of Transport with Non-autonomous Electrical Traction;502
61.1;Abstract;502
61.2;1 Introduction;502
61.3;2 The Operational Scheme of the Proposed Propulsion System;503
61.4;3 An Experimental Model to Demonstrate the Advantages of the Proposed Concept;505
61.5;4 Conclusions;506
61.6;References;507
62;Validation of a Human-and-Hardware-in-the-Loop Control Algorithm Using Real Time Simulation;508
62.1;Abstract;508
62.2;1 Introduction;508
62.3;2 Electric Vehicle Model;509
62.4;3 The Control Algorithm;514
62.5;4 Validation of the Control Algorithm Using Real Time Simulation;514
62.6;5 Conclusions;518
62.7;Acknowledgements;518
62.8;References;518
63;Electronic Control Systems of E-Smart Vehicle;520
63.1;Abstract;520
63.2;1 Introduction;520
63.3;2 E-Smart Vehicle Electronic Devices;521
63.3.1;2.1 Electronic Control Module;521
63.3.2;2.2 System Electronic Interface (SEI);523
63.3.3;2.3 Battery Management System;523
63.4;3 E-Smart Vehicle Functionality;524
63.4.1;3.1 E-Smart Driving Modes;524
63.4.2;3.2 E-Smart Motor Parameters;525
63.5;4 Conclusions;527
63.6;References;527
64;Battery Management System of E-Smart Vehicle;528
64.1;Abstract;528
64.2;1 Introduction;528
64.3;2 E-Smart Vehicle Battery Management Components;529
64.3.1;2.1 Batteries;529
64.3.2;2.2 Batteries Charger;530
64.3.3;2.3 Battery Management System;530
64.3.4;2.4 Parameters Display System;532
64.4;3 E-Smart Battery Management Functionality;532
64.4.1;3.1 E-Smart Test Procedures;532
64.4.2;3.2 E-Smart Batteries Pack Parameters;532
64.5;4 Conclusions;534
64.6;References;535
65;New Materials, Manufacturing Technologies and Logistics;536
66;Worldwide Diversity Management of “Global Access” Renault/Dacia’s Vehicle Range by Using a Modern PLM System;537
66.1;Abstract;537
66.2;1 Context;537
66.3;2 Complexity of “Global Access” Range of Renault/Dacia;537
66.3.1;2.1 About Renault Technologie Roumanie (RTR);537
66.3.2;2.2 Managing Diversity;539
66.4;3 The Renault’s Modern PLM Platform;541
66.4.1;3.1 Why PLM?;541
66.4.2;3.2 Choosing the Right and Tailored PLM Platform;541
66.4.3;3.3 Advantages – Why DS’ V6?;542
66.5;4 Case Study: The Worldwide Administration/Tracking of a BIW Common Part: Rear Skirt (End-Panel) of Sandero;543
66.6;References;545
67;Potential Capabilities of Shape Memory Driven Automotive Devices;546
67.1;Abstract;546
67.2;1 Introduction;546
67.3;2 State of Art of Shape Memory Alloys;547
67.3.1;2.1 Physical Effects and Fundamental Material Mechanisms;547
67.3.2;2.2 Available Alloys: Characteristics and Limitations;551
67.3.3;2.3 Potential Capabilities for SMAs in Automotive Applications;552
67.4;3 Examples for the Use of SMA in Automotive Devices;552
67.4.1;3.1 Overview of Potential Applications;552
67.4.2;3.2 First Serial Automotive Application: SMA Pneumatic Valves for Lumbar Support in Car’s Seats;552
67.4.3;3.3 Further Potential Applications;554
67.5;4 Summary and Outlook;555
67.6;References;555
68;Applicability of Composite Forming Technologies for Automotive Components;557
68.1;Abstract;557
68.2;1 Introduction;557
68.3;2 Technologies Used for Steering Column Components;557
68.3.1;2.1 Autoclave Technology;559
68.3.2;2.2 RTM Technology;561
68.3.3;2.3 Winding Space Technology;563
68.4;3 Conclusion;564
68.5;References;565
69;Constructive Optimization of Composite Materials Automotive Components;566
69.1;Abstract;566
69.2;1 Introduction;566
69.3;2 Concept Evolution for Steering Column Console Using Space Winding Technology;567
69.3.1;2.1 Version 1;567
69.3.2;2.2 Version 2;569
69.4;3 Conclusion;573
69.5;References;574
70;The Evaluation of Rheological Properties of Composites Reinforced with Hemp, Subjected to Photo and Thermal Degradation;575
70.1;Abstract;575
70.2;1 Introduction;575
70.3;2 Materials and Experimental Method;577
70.3.1;2.1 Materials;577
70.3.2;2.2 Experimental Methods;577
70.4;3 Results and Discussion;578
70.4.1;3.1 The Determination of the Surface Roughness Before and After Exposure to UV Radiation by Means AFM;578
70.4.2;3.2 The Evaluation of the Dynamic Modulus and Damping Coefficient for Different Frequencies of Dynamic Loads;579
70.4.3;3.3 The Assessment of Dynamic (Complex) Modulus and Damping Coefficient with Increasing the Temperature;581
70.5;4 Conclusion;583
70.6;Acknowledgement;583
70.7;References;583
71;Optimization of the Plastic Injection Molding Parameters by Using the Taguchi Method to Prevent Jammed Components in the Assembly Process of Mechatronic Devices;585
71.1;Abstract;585
71.2;1 Introduction;586
71.3;2 Taguchi Method;588
71.4;3 Study Regarding the Optimization of the Plastic Injection Molding Parameters;588
71.4.1;3.1 Material, Machine and Parameter Selection;588
71.4.2;3.2 Selection of Orthogonal Array;589
71.4.3;3.3 Shrinkage Measurements;590
71.4.4;3.4 Shrinkage Values and S/N Ratio;590
71.5;4 Results and Interpretation;591
71.5.1;4.1 ANOVA Analysis;593
71.6;5 Conclusions;593
71.7;References;594
72;Key Characteristics of the World Class Manufacturing Concept in the Production of Chassis for Buses Industry;595
72.1;Abstract;595
72.2;1 Introduction;595
72.3;2 World Class Business Process Management;597
72.4;3 Technical and Managerial Pillars of WCM;597
72.5;4 Appling WCM in the Buses Industry;598
72.6;5 Conclusions;600
72.7;References;601
73;Advanced Automotive Assembly Line Trends as Tools in Optimizing Production Line Performance;602
73.1;Abstract;602
73.2;1 Introduction;602
73.3;2 Configurative Variations of the Assembly Line;603
73.3.1;2.1 Team Based Assembly;604
73.3.2;2.2 Modular Assembly;605
73.3.3;2.3 Cell Assembly;605
73.3.4;2.4 “U” Shape Assembly Line;605
73.4;3 Advanced Automotive Assembly Line Trends;606
73.5;4 Conclusion;607
73.6;References;608
74;Cleaning Methods for Flux Pollution Measurement in Automotive CoolantLoop Components;609
74.1;Abstract;609
74.2;1 Introduction;609
74.3;2 Cleaning Methods;611
74.4;3 Measuring Methods;614
74.5;4 Flux Deposit Processes;614
74.6;5 Results;616
74.7;6 Discussion;618
74.8;7 Conclusion;618
74.9;References;618
75;Design and Development of Chassis Along with Novel Under Run Protection Devices for Commercial Vehicles with the Use of an Innovative Approach Resulting in Lighter Weight of the Vehicle;620
75.1;Abstract;620
75.2;1 Introduction;620
75.2.1;1.1 Frame Overview;621
75.2.2;1.2 Under Run Protection Devices;621
75.3;2 Development Phases with Virtual Validations;622
75.3.1;2.1 Frame;622
75.3.2;2.2 The Underrun Protection Devices;625
75.4;3 Physical Validation;627
75.5;4 Conclusion;628
75.6;Acknowledgments;628
75.7;References;629
76;The Quality Management Principles and Their Incidence Within ISO 9001:2015;630
76.1;Abstract;630
76.2;1 Introduction;630
76.3;2 The Quality Management Principles Within the ISO 9001;631
76.3.1;2.1 The Structure of the New ISO 9001:2015;631
76.3.2;2.2 The New Set of Quality Management Principles;632
76.4;3 Data Analysis for the Researched Study;632
76.5;4 Conclusions;636
76.6;5 New Developments for ISO/TS 16949 According with the ISO 9001 Family of Standards Changes;637
76.7;References;637
77;Product Quality Control Optimization for Selection of Measurement and Control Devices;639
77.1;Abstract;639
77.2;1 General Information;639
77.3;2 Actual Principles for Methods and Devices for Product Quality Control and Measurement Selection;640
77.4;3 Optimized Selection of Measurement and Control Devices from the Point of Time in Service Cost of the Equipment’s Used for Product Quality Verification;640
77.5;4 Conclusions;644
77.6;References;644
78;Improvement of the 8D Analysis Through a System Based on the “Internet of Things” Concept Applied in Automotive Industry;645
78.1;Abstract;645
78.2;1 Introduction;645
78.3;2 The Solution Presentation;647
78.4;3 The Central Station and Client Application;648
78.5;4 The Radio Network;649
78.6;5 The Endpoints from Workstations and Warehouse;650
78.7;6 Conclusions;651
78.8;References;652
79;A Case Study Regarding the Implementation of Six Sigma in an Assembly Process for the Automotive Parts;653
79.1;Abstract;653
79.2;1 Introduction;653
79.3;2 Implementation of Six Sigma. Case Study;654
79.3.1;2.1 Define Phase;654
79.3.2;2.2 Measure Phase;655
79.3.3;2.3 Analyze Phase;656
79.3.4;2.4 Improvement Phase;656
79.3.5;2.5 Control Phase;657
79.4;3 Conclusions;660
79.5;References;660
80;Advanced Transport Systems and Road Traffic;661
81;Analysis of the Influence of One-Way Streets on the Urban Road Networks Connectivity;662
81.1;Abstract;662
81.2;1 Introduction;662
81.3;2 One-Way Streets Particularities;663
81.4;3 Connectivity in Road Networks;664
81.4.1;3.1 Road Networks Representation;664
81.4.2;3.2 Basics of Graph Theory and Connectivity;665
81.4.3;3.3 Topological Measures of the Graph;666
81.4.4;3.4 The Influence of One-Way Streets on the Connectivity Indicators in Intersections;669
81.5;4 Analysis of the Civic Center Area of the Brasov City Network;670
81.5.1;4.1 Primal and Dual Graph for the Road Network with One-Way Streets (Scenario S1 – Real Situation);671
81.5.2;4.2 Primal and Dual Graph for Two-Way Road Network (Scenario S2);672
81.6;5 Conclusions;675
81.7;References;675
82;Cooperative Smart Intersection as an Enabler of Advanced Traffic Management Systems;677
82.1;Abstract;677
82.2;1 Introduction;677
82.3;2 Cooperative Smart Intersection;678
82.3.1;2.1 Application Insights;678
82.3.2;2.2 Challenges;679
82.3.3;2.3 Benefits and Future Evolutions;679
82.4;3 Impact Assessment;680
82.4.1;3.1 Evaluation Context and Experiments Set-up;680
82.4.2;3.2 Data Elaboration Process;680
82.4.3;3.3 Discussion on Results;681
82.5;4 Conclusions;682
82.6;Acknowledgements;683
82.7;References;683
83;Bus Routing Safety for the Transportation of Children to School;685
83.1;Abstract;685
83.2;1 Introduction;685
83.3;2 Methodology for Solving the SBRP in SAFEWAY2SCHOOL;686
83.3.1;2.1 Safe Map;686
83.3.2;2.2 Safety Criteria Used in the Presented Methodology;687
83.3.3;2.3 Pedestrian Routing;688
83.3.4;2.4 School Bus Routing;689
83.4;3 Conclusions;691
83.5;Acknowledgements;692
83.6;References;692
84;Improving the Road Traffic Regulation in the Area of Roundabout Intersections Function of the Traffic Streams Size;693
84.1;Abstract;693
84.2;1 Stating the Problem and the Objectives;693
84.3;2 Mathematical Modeling of Traffic Flows in a Roundabout;695
84.3.1;2.1 The 3-Arm Roundabout;696
84.3.2;2.2 The 4-Arm Roundabout;697
84.4;3 Synthesis of the Theoretical Results Obtained;698
84.5;4 Research Based on Traffic Observations for the Purposes of Submitting Proposals on Road Traffic Organization in the Podul Viilor Area;699
84.6;5 Proposals for Improving Traffic Regulation;701
85;Traffic Optimization in Urban Area - Roundabout Versus Lights Case Studies;703
85.1;Abstract;703
85.2;1 Introduction;703
85.3;2 Roundabout and Signals Traffic Capacity Evaluation;704
85.4;3 Case Study;706
85.4.1;3.1 Traffic Data;706
85.4.2;3.2 Results and Discussions;707
85.5;4 Conclusion;709
85.6;References;710
86;Mathematical Algorithm for Calculating the Total Traffic Lights Cycle in Junctions;711
86.1;Abstract;711
86.2;1 Introduction;711
86.3;2 Grouping Movements in Intersection;712
86.3.1;2.1 Possible Combinations of Moves for the 4 Arms;712
86.4;3 Traffic Light Cycle Calculation;715
86.4.1;3.1 Input Data in the Mathematical Algorithm;715
86.4.2;3.2 Saturation Flow;715
86.4.3;3.3 Traffic Light Cycle;716
86.5;4 Conclusion;718
86.6;References;718
87;Study on the Influence of Intersections with Forest Roads upon the Traffic Flows on Highways;719
87.1;Abstract;719
87.2;1 Introduction;719
87.3;2 Materials and Methods;719
87.3.1;2.1 Research Method;720
87.3.2;2.2 Instrumented Vehicle;720
87.3.3;2.3 Research Site;720
87.3.4;2.4 Data Acquisition Equipment;722
87.3.5;2.5 Conducting the Experiments;722
87.4;3 Data Processing and Results;723
87.4.1;3.1 Speed Variation Depending on Distance;725
87.4.2;3.2 Determination of the Speeds V15, V50 and V85;725
87.5;4 Conclusions;728
87.6;5 Proposals;728
87.7;References;729
88;Smart Solar Electric Tricycle;730
88.1;Abstract;730
88.2;1 Introduction;730
88.3;2 Electric Schematic of the Solar Tricycle;731
88.4;3 Resistive Forces and Tricycle Performance;732
88.5;4 Traffic Light Simulation and Data Processing;734
88.6;5 Simulation Results;735
88.7;6 Conclusion;737
88.8;References;737
89;Programming an Autonomous Mini-vehicle in Narrow Environments;738
89.1;Abstract;738
89.2;1 Introduction;738
89.3;2 Materials and Methods;739
89.3.1;2.1 The Hardware and Software Architecture of the Autonomous Mini-Vehicle;739
89.3.2;2.2 The Trajectory Planning Algorithm and Programing;740
89.4;3 Test Cases;742
89.5;4 Conclusions;744
89.6;Acknowledgment;745
89.7;References;745
90;About Uncontrollable Reactions of the Driver Due to Skin Mechanical Stimuli;746
90.1;Abstract;746
90.2;1 Introduction;746
90.3;2 State of the Art;747
90.3.1;2.1 About Vibro-Tactile Stimuli;747
90.3.2;2.2 About Neuro Biological Implications of Mechanical Stimuli Reaction;748
90.4;3 Materials and Methods;749
90.5;4 Results;750
90.6;5 Conclusion;753
90.7;Acknowledgements;753
90.8;References;753
91;Development of an Advanced Driver Assistance System Using RGB-D Camera;755
91.1;Abstract;755
91.2;1 Introduction;755
91.3;2 Development of the ADAS System;756
91.4;3 Evaluation of the Developed ADAS System;757
91.5;4 Conclusions;759
91.6;Acknowledgment;759
91.7;References;760
92;A Method for Transforming Electric Vehicles to Become Autonomous Vehicles;761
92.1;Abstract;761
92.2;1 Introduction;761
92.3;2 State of the Art;762
92.3.1;2.1 Electric Vehicles Architectures;762
92.3.2;2.2 Sensors;763
92.3.3;2.3 Mapping and Path Planning Algorithms;763
92.4;3 Hardware Architecture;763
92.4.1;3.1 Steering System;765
92.4.2;3.2 Brake and Acceleration System;765
92.4.3;3.3 System Level Sensors;766
92.5;4 Software Architecture;767
92.5.1;4.1 SLAM, Odometry and Path Planning;767
92.6;5 Safety Concept;768
92.7;6 Test and Validation;769
92.8;7 Conclusion;770
92.9;References;770
93;Accident Research and Analysis;771
94;Cars Crashes with Cars of Same or Different Generation – Occupant’s Loads, Timings and Acceleration’s Effects;772
94.1;Abstract;772
94.2;1 Introduction;772
94.3;2 Experimentals Tests;777
94.4;3 Conclusion;785
94.5;REFERENCES;788
95;Crash Tests Data Acquisition and Processing;789
95.1;Abstract;789
95.2;1 Introduction;789
95.3;2 Data Acquisition;790
95.3.1;2.1 Acceleration Measurement;790
95.3.2;2.2 Speed Measurement;792
95.4;3 Data Processing - Filtering;792
95.5;4 Crash Tests - Results;794
95.6;5 Conclusions;796
95.7;References;796
96;Research Regarding Occupant’s Movement in the Case of Frontal Collision Using High-Speed Video Recording;797
96.1;Abstract;797
96.2;1 Introduction;797
96.3;2 Objectives;798
96.4;3 Methods and Equipment Used;798
96.5;4 Results;799
96.6;5 Conclusions;804
96.7;References;804
97;Research Regarding the Influence of Vehicle’s Safety Restraint Systems on Its Occupants in Case of Rear-End Collision;805
97.1;Abstract;805
97.2;1 Introduction;805
97.3;2 Objectives;805
97.4;3 Methods and Equipment Used;806
97.5;4 Results;807
97.6;5 Conclusions;811
97.7;References;811
98;The Assessment of the Head Injury of a Pedestrian in Comparison with a Cyclist;812
98.1;Abstract;812
98.2;1 Introduction;812
98.3;2 Methodology;813
98.4;3 Results;814
98.5;4 Assessment of the Head Injury Risk;816
98.6;5 Conclusions;817
98.7;References;817
99;Determination of Kinematic and Dynamic Behavior in the Driver’s Skull upon the Impact with the Steering Wheel;819
99.1;Abstract;819
99.2;1 Introduction;819
99.3;2 The Virtual Prototyping of the Frontal Impact for a Complex Dummy-Vehicle-Safety Systems Structure;820
99.3.1;2.1 Vehicle Law of Motion During the Impact;820
99.3.2;2.2 The Dummy-Vehicle Model;821
99.3.3;2.3 The Kinematic and the Dynamic Behavior in the Dummy Head Area;822
99.4;3 Skull-Steering Wheel Impact Modeling;823
99.5;4 Conclusion;825
99.6;References;826
100;Pedestrian Dynamics During the Contact Phase with the Vehicle;827
100.1;Abstract;827
100.2;1 Introduction;827
100.3;2 General Simplified Model Illustrating the Movement of a Hit Body;828
100.4;3 Analysis of the Pedestrian Dynamics During the Contact Phase with the Vehicle;829
100.4.1;3.1 Sub-phase Between Primary Impact and Secondary Impact;829
100.4.2;3.2 Phase 1.2 After Secondary Impact Until the Flying/Falling Phase;832
100.5;4 Conclusions;833
100.6;References;834
101;Example of a High-Speed, Side-Impact, Car Crash Reconstruction Using a Planar Multibody Software;836
101.1;Abstract;836
101.2;1 Introduction;836
101.3;2 Accident Description;837
101.4;3 Computer Simulation;838
101.5;4 Results;839
101.6;5 Conclusions;840
101.7;APPENDIX 1: Geometry of the 2004 SKODA Octavia;840
101.8;APPENDIX 2: Geometry of the 2004 BMW Series 3 Touring;841
101.9;References;841
102;Is the Virtual Homologation for Pedestrian Protection Viable?;843
102.1;Abstract;843
102.2;1 Pedestrian Safety Systems;843
102.3;2 Pedestrian Crash Dynamics;844
102.4;3 Pedestrian Injury Biomechanics;845
102.5;4 Pedestrian Protection Homologation Tests;845
102.6;5 Virtual Test of a Pedestrian Crash;846
102.7;6 Results;847
102.8;7 Conclusion;849
102.9;References;850
103;Comparative Analysis of Kinematics and Dynamics Parameters that Characterize Vehicle-Pedestrian Collision;851
103.1;Abstract;851
103.2;1 Introduction;851
103.3;2 Circumstances of the Traffic Accident;852
103.4;3 Reconstruction of the Specific Parameters of the Vehicle-Pedestrian Traffic Accident;854
103.4.1;3.1 Reconstruction of the Specific Parameters of the Vehicle-Pedestrian Traffic Accident Using Analytical Methods with Numerical Solutions;854
103.4.2;3.2 Reconstruction of the Specific Parameters of the Vehicle-Pedestrian Traffic Accident Using Analytical Methods;857
103.5;4 Conclusions;861
103.6;References;861
104;The Importance of Consumed Energy for Deformation in Study of Collision;863
104.1;Abstract;863
104.2;1 Introduction;863
104.3;2 Side Impact Energy;864
104.4;3 Yaw Movement;867
104.5;4 Experimental Analysis and Electronics;869
104.6;5 Conclusions;870
104.7;References;870
105;Aspects Regarding the Reconstruction of Traffic Events;872
105.1;Abstract;872
105.2;1 Introduction;872
105.3;2 Linear Momentum and Principal Direction of Force;873
105.3.1;2.1 Principal Direction of Force;874
105.4;3 Occupant Dynamics;877
105.5;4 Experimental Analysis and Electronics;878
105.6;5 Conclusions;879
105.7;References;879
106;Vehicle Driver Drowsiness Monitoring and Warning System;880
106.1;Abstract;880
106.2;1 Introduction;880
106.3;2 Preliminary Results;881
106.4;3 Presentation of the Concept;884
106.5;References;886
107;Research Regarding Pedestrian Visibility During Night-Time Using Photo Processing;888
107.1;Abstract;888
107.2;1 Introduction;888
107.3;2 Methodology;889
107.4;3 Results;890
107.4.1;3.1 First Scenario – Source Vehicle Having Low Beams Turned on;891
107.4.2;3.2 Second Test Scenario – Source Vehicle Having the High-Beams On;891
107.4.3;3.3 Third Test Scenario – the Source Vehicle and the Oncoming Vehicles Have the Low Beams Turned on;892
107.5;4 Calculation of the Initial Car Velocity in Order to Avoid the Collision with the Pedestrian;893
107.6;5 Conclusions;895
107.7;References;895
108;Estimating the Costs Caused by Road Traffic Accidents in Romania;896
108.1;Abstract;896
108.2;1 Introduction;896
108.3;2 The Method;897
108.4;3 Costs Components;898
108.4.1;3.1 Classification of the Road Accidents and Injured Persons;898
108.4.2;3.2 Costs’ Structure;898
108.4.3;3.3 Total Costs;903
108.5;4 Conclusions;904
108.6;Acknowledgments;904
108.7;References;904