Chiru / Ispas | CONAT 2016 International Congress of Automotive and Transport Engineering | E-Book | sack.de
E-Book

E-Book, Englisch, 905 Seiten, eBook

Chiru / Ispas CONAT 2016 International Congress of Automotive and Transport Engineering


1. Auflage 2017
ISBN: 978-3-319-45447-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 905 Seiten, eBook

ISBN: 978-3-319-45447-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The volume will include selected and reviewed papers from CONAT - International Congress of Automotive and Transport Engineering to be held in Brasov, Romania, in October 2016. Authors are experts from research, industry and universities coming from 14 countries worldwide. The papers are covering the latest developments in automotive vehicles and environment, advanced transport systems and road traffic, heavy and special vehicles, new materials, manufacturing technologies and logistics, accident research and analysis and innovative solutions for automotive vehicles.The conference will be organized by SIAR (Society of Automotive Engineers from Romania) in cooperation with FISITA.
Chiru / Ispas CONAT 2016 International Congress of Automotive and Transport Engineering jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1;Preface;5
2;Scientific Committee;7
3;Contents;9
4;Advanced Engineering Methods;18
5;Novel Simulation Methodology for the Estimation of the Flow Mark Risk Associated with the Injection of Mass Colored Plastic Materials;19
5.1;Abstract;19
5.2;1 Introduction;19
5.3;2 Aluminum Pigments and the Metallic Effect;21
5.4;3 Local Flow Perturbations at the Source of Flow Marks;22
5.4.1;3.1 Developed Flow Zone – Wall Proximity;22
5.4.2;3.2 Developed Flow Zone – Core Zone;23
5.4.3;3.3 Fountain Flow Zone Role for the Generation of Flow Marks;24
5.5;4 Simulation Model and Correlation;25
5.5.1;4.1 The Model;25
5.5.2;4.2 The Study Case;25
5.5.3;4.3 Simulation Results and Correlation with Experiment;27
5.6;5 Conclusions;30
5.7;Acknowledgments;31
5.8;References;31
6;Numerical and Experimental Investigations of a Twin Sheet Thermoplastic Structure with Rectangular Frusta;33
6.1;Abstract;33
6.2;1 Introduction;33
6.3;2 Experimental Investigation of the Twin Sheet Structures;34
6.4;3 Numerical Investigation of Twin Sheet Thermoplastic Structures;37
6.5;4 Parametric Analysis;39
6.6;5 Conclusions;40
6.7;References;41
7;Expanded Polypropylene Finite Elements Analysis in Transport Application;42
7.1;Abstract;42
7.2;1 Introduction;42
7.3;2 Expanded Polypropylene;43
7.3.1;2.1 Applications;43
7.3.2;2.2 Properties and Behavior;43
7.4;3 Material Testing;44
7.4.1;3.1 Test Set-up and Results;44
7.5;4 Curve Fitting and Validation of Material Model;45
7.5.1;4.1 Curve Fitting of Material Model;46
7.5.2;4.2 Validation of Material Model;47
7.6;5 Finite Elements Analysis;48
7.6.1;5.1 Material Properties, Meshing and Boundary Conditions;48
7.6.2;5.2 Results;48
7.7;6 Conclusions;49
7.8;References;50
8;Functional Description and Design Aspects of Hybrid Transmissions;52
8.1;Abstract;52
8.2;1 Introduction;52
8.3;2 Generalization from Non-hybrid to Hybrid Modes;54
8.4;3 Examples of Graphical Representations for Operating Modes;55
8.4.1;3.1 P2-Double-Clutch-Transmission (DCT);55
8.4.2;3.2 DCT with Integrated Hybrid;56
8.4.3;3.3 P3-DCT;57
8.4.4;3.4 Integrated AT-Hybrid with Several Modes and e-CVT;57
8.5;4 Operating Mode Transitions;58
8.6;5 Design Aspects;59
8.7;6 Clutches/Brakes and Their Dimensioning;59
8.7.1;6.1 Short Shifting Components;60
8.7.2;6.2 Bearings;61
8.7.3;6.3 On-demand Actuation;61
8.8;7 Summary;62
8.9;References;62
9;Comparative Study on the Performances of Aerodynamic Devices Used in Decreasing of the Automobiles Lift Force;64
9.1;Abstract;64
9.2;1 Introduction;64
9.3;2 Experimental Setup;65
9.4;3 Results and Discussions;67
9.5;4 Conclusions;69
9.6;References;69
10;Analysis of the Influence of the Drive Force Distribution Between Axles on an Automobile Stability in Its Curvilinear Motion;71
10.1;Abstract;71
10.2;1 Introduction;71
10.3;2 Vehicle Model;72
10.4;3 Under- and Oversteer According to ISO Standard;73
10.5;4 Tires Characteristics;75
10.6;5 Investigation of Influence of Drive Force Distribution on Vehicle Handling;76
10.7;6 Conclusions;78
10.8;References;78
11;About the Steering Kinematics of the Road Trains;80
11.1;Abstract;80
11.2;1 Vehicle Steering;80
11.3;2 Importance of the Research Theme;82
11.4;3 Road Trains;82
11.5;4 Steering Kinematics;84
11.6;5 Algorithm Implementation and Results;88
11.7;6 Conclusions;89
11.8;References;89
12;Evaluation by Experimental Methods of the Parameters that Influence the Behavior of Various Passenger Cars Classes in the Braking Process;91
12.1;Abstract;91
12.2;1 Introduction;91
12.3;2 The Experimental Determination of the Parameters that Influence the Behavior of the Cars in the Braking Process;92
12.4;3 Conclusions;98
12.5;References;98
13;Evaluation of the Behavior in Cornering for Different Classes of Passenger Cars by Numerical Modeling;99
13.1;Abstract;99
13.2;1 Introduction;99
13.3;2 Determination of the Distributed Masses on the Car Axles for Different Loads;100
13.4;3 The Numerical Evaluation Method;100
13.5;4 Obtained Results;102
13.6;5 Conclusions;104
13.7;References;104
14;Structural Dynamic Applications Using Principal Component Analysis Method;106
14.1;Abstract;106
14.2;1 Introduction;106
14.3;2 Deterministic Versus Random Loads;107
14.4;3 Road Noise Principal Component Analysis (PCA);108
14.5;4 Road Noise Reduction Using Source Decomposition and Panel Contribution Analysis;110
14.5.1;4.1 Road Load Source Decomposition Process;110
14.5.2;4.2 Panel Contribution Analysis Process;112
14.6;5 Conclusions;113
14.7;References;115
15;Weight Optimization of Existing Transmission Housing for Heavy Duty Commercial Vehicles Using Correlated Simulation and Experimental Tools;116
15.1;Abstract;116
15.2;1 Introduction;116
15.3;2 Topology Optimization;117
15.4;3 Process Implementation;118
15.5;4 FE Modelling;119
15.6;5 PGAP Elements;119
15.7;6 Activating Non-linear Solution (NLPARM);120
15.8;7 Structural Analysis;120
15.9;8 Static Analysis Results;121
15.10;9 Experimental Verification;123
15.11;10 Conclusions;124
15.12;Acknowledgments;125
15.13;References;125
16;New Approaches in Designing a Race Car Chassis for an Engineering Competition;126
16.1;Abstract;126
16.2;1 Introduction;126
16.3;2 Problem Definition;127
16.4;3 Methods and Materials;128
16.5;4 Results;131
16.5.1;4.1 Linear Braking;131
16.5.2;4.2 Optimization;132
16.6;5 Conclusions;134
16.7;Acknowledgements;135
16.8;References;135
17;Presentation of Tests with a Dynamometer Related to the Determination of Fuel Consumption in the NEDC and WLTC Driving Cycles and as Well Related to the Dynamic Behavior of Vehicles;136
17.1;Abstract;136
17.2;1 Introduction;136
17.3;2 Presentation of the Dynamometer;137
17.4;3 Consumption Measurement;139
17.4.1;3.1 NEDC (New European Drive Cycle) Und WLTC/WLTP (Worldwide Harmonized Light Vehicle Test Cycle/Test Procedure);139
17.4.2;3.2 Method of Measurement of the Fuel Consumption Driving the Test Vehicle;140
17.5;4 Determination of the Maximum Acceleration;142
17.6;5 Slippage at the Drive Wheels;142
17.7;6 Conclusion;143
17.8;References;143
18;Validation Procedure for Worldwide Harmonized Light Vehicles Test Cycle via Hardware in the Loop - Real Time Testing;144
18.1;Abstract;144
18.2;1 Introduction;144
18.3;2 Materials and Methods;145
18.3.1;2.1 Experimental Test Bed;145
18.3.2;2.2 Model in the Loop;146
18.3.3;2.3 Software in the Loop;147
18.3.4;2.4 Model Implementation;148
18.3.5;2.5 Hardware in the Loop;149
18.4;3 Conclusions;151
18.5;References;151
19;Experimental Investigation of a Vehicle Behavior Using Different Complex Data Acquisition Systems;152
19.1;Abstract;152
19.2;1 Introduction;152
19.3;2 Experimental Setup;153
19.3.1;2.1 MAHA Dynamometer Stand;153
19.3.2;2.2 OP-COM Interface;154
19.4;3 Results and Discussion;155
19.5;4 Conclusion;159
19.6;References;159
20;Validation of Kinematic Simulation of Sprocket Contacts of Chain Links by Experiments;160
20.1;Abstract;160
20.2;1 Introduction;160
20.3;2 Experimental Approach;161
20.4;3 Numerical Simulation;163
20.5;4 Correlation Between the Experimental Approach and the Numerical Simulation;165
20.6;5 Conclusions;166
20.7;References;167
21;Belt Losses Evaluation for a Push-Belt CVT;168
21.1;Abstract;168
21.2;1 Introduction;168
21.3;2 Virtual Development Methodology;169
21.3.1;2.1 The Transmission;169
21.3.2;2.2 The Simulation Model;171
21.3.3;2.3 The Heat Exchange;173
21.4;3 Simulation Results;174
21.5;4 Conclusions;175
22;Kinematic and Dynamic Study of a Mechanism for a Vehicle Front and Rear Stabilizer Bars;177
22.1;Abstract;177
22.2;1 Introduction;177
22.3;2 Experimental Setup;178
22.4;3 Rear Stabilizer Bar Test Bed Elasto-Dynamic Analysis;179
22.4.1;3.1 Mathematical Modeling;179
22.4.2;3.2 Numerical Simulations;180
22.5;4 Experimental Analysis of a Rear Axle Stabilizer Bar;182
22.6;5 Conclusions;184
22.7;References;184
23;Methods for Modeling an Elastic System with Permanent Contour Coupling Deformation;186
23.1;Abstract;186
23.2;1 Introduction;186
23.3;2 Modeling the Coupling Elastic Structure;187
23.3.1;2.1 Structure of Cylindrical Articulate Beams (Rotation Is Permitted), Fig. 2;188
23.3.2;2.2 Structure of Fixed Beams, Fig. 3;189
23.4;3 Conclusion;193
23.5;References;193
24;Reinvestigation of the Electromagnetic Valve Train (EMVT) Technology via Multidomain Simulation;194
24.1;Abstract;194
24.2;1 Introduction;194
24.3;2 Basic Principles of a Spring Mass System Based EMVT;195
24.4;3 Simulation method;197
24.4.1;3.1 Simulation of the mechanical and electrical system;197
24.4.2;3.2 Magnetic field simulation;198
24.4.3;3.3 Gas force analysis;198
24.4.4;3.4 Controller simulation;199
24.5;4 Simulation results;201
24.6;5 Summary;202
24.7;References;202
25;Study on Mixture Formation at an Experimental Spark Ignition Engine;203
25.1;Abstract;203
25.2;1 Introduction;203
25.3;2 Prerequisites for Testing and Simulation;204
25.4;3 Experiments on Single-Cylinder Spark Ignition Engine;205
25.5;4 Mixture Formation Prediction Through CFD Trials;207
25.5.1;4.1 Prerequisites for the CFD Analysis;207
25.5.2;4.2 Preliminary Results;208
25.6;5 Conclusions and Future Work;209
25.7;Acknowledgements;210
25.8;References;210
26;Aspects Concerning Modeling of Combustion for Compression Ignition Engine with Injection Management;211
26.1;Abstract;211
26.2;1 Introduction;211
26.3;2 Application Requirements;212
26.4;3 Experimental Compression Ignition Single Cylinder Testing;213
26.4.1;3.1 Evaluation of In-Cylinder Processes;214
26.4.2;3.2 Simulation;216
26.5;4 Conclusions and Future Work;217
26.6;References;218
27;Comparative Study on the Performances of the One-Way Hydraulic Valves;219
27.1;Abstract;219
27.2;1 Introduction;219
27.3;2 State of the Art and Application Requirements;220
27.4;3 CFD Simulation Models for the Proposed One-Way Valves;221
27.4.1;3.1 Simulation Methodology;221
27.4.2;3.2 Ball Check Valve and Spring Valve;222
27.4.3;3.3 Reed Valve;223
27.5;4 Conclusions;224
27.6;Acknowledgements;224
27.7;References;224
28;Estimation of Boiling Points of Brake Fluids;225
28.1;Abstract;225
28.2;1 Introduction;225
28.3;2 Experimental Section;226
28.3.1;2.1 Materials and Methods;226
28.3.2;2.2 Used Apparatus;226
28.4;3 Results and Discussion;227
28.5;4 Conclusions;231
28.6;References;231
29;Modelling and Optimization of Constructive Form for GO-NOGO Exterior and Interior Diameter Gauges;233
29.1;Abstract;233
29.2;1 Introduction;233
29.3;2 Actual Principles for Selection of Methods and Instruments for Control of Product Quality;234
29.4;3 Finite Element Modelling for Interior and Exterior Diameter Gauges;234
29.5;4 Constructive Form Optimization for Exterior Diameter Gauge in Order to Reduce the Thermal Expansion;239
29.6;5 Conclusions;241
29.7;References;242
30;Systems Engineering Requires Digital Twins of Machine Elements;243
30.1;Abstract;243
30.2;1 Introduction;243
30.3;2 The Virtual Twin of a Machine Element;244
30.4;3 Model Based Systems Engineering;246
30.5;4 Conclusions;248
30.6;References;249
31;Collaborative Design and Use of Interactive Simulations: Boost the Learning Environment in Road Vehicle Dynamics Curriculum;250
31.1;Abstract;250
31.2;1 Introduction;250
31.3;2 Simulation Studies of Coast-Down Testing;251
31.3.1;2.1 Learning Outcome: Coast-Down Simulation;251
31.3.2;2.2 Background: Theory of Coasting Vehicle;251
31.3.3;2.3 Simulation Methodology and Analysis;253
31.4;3 Simulation Studies of Brake Proportioning System;253
31.4.1;3.1 Learning Outcomes: Brake Proportioning Simulation and FMVSS 105;254
31.4.2;3.2 Background: Theory of Brake Proportioning;254
31.4.3;3.3 Simulation Methodology and Analysis;254
31.5;4 Simulation Studies of Driver-in-the-Loop;256
31.5.1;4.1 Learning Outcomes: Simulation Studies of Driver-in-the-Loop;256
31.5.2;4.2 Background: Driver-in-the-Loop;256
31.5.3;4.3 Simulation Methodology and Analysis;257
31.6;5 Conclusion;257
31.7;References;257
32;Experimental Researches on the Magneto-Rheological Dampers Response to the Control Parameters;259
32.1;Abstract;259
32.2;1 Introduction;259
32.3;2 Test Bench Presentation;261
32.4;3 Experimental Results;262
32.5;4 Conclusions;265
32.6;References;265
33;Innovative Solution for Motor Vehicles;267
34;Contributions in Experimental Research Concerning Diesel Fuel Supply and Lubrication in the Case of Comparative Study Between Euro V and IV Common Rail Engines;268
34.1;Abstract;268
34.2;1 Introduction;268
34.3;2 State of the Art Systems and Methods;269
34.3.1;2.1 Studies About Fuel Consumption and Lubrication;269
34.3.2;2.2 Mathematical Equations Related to the Fuel Consumption;271
34.4;3 Materials and Method;271
34.4.1;3.1 Conventional Methods Applied in Fuel Consumption Investigation;271
34.4.2;3.2 Materials and Test Procedures;272
34.5;4 Study of the Experimental Testing Results;275
34.6;5 Conclusion;278
34.7;Acknowledgement;278
34.8;References;278
35;Experimental Research Regarding the Possibility of Biofuel Fumigation Supply Method on a Single Cylinder Compression Ignited Engine;279
35.1;Abstract;279
35.2;1 Introduction;279
35.3;2 State of the Art Technology Available in the Research Field;280
35.3.1;2.1 Studies About Fuels and Biofuels Close Related to Research Field;280
35.3.2;2.2 Relevant Studies Concerning Fumigation Method Applied in Diesel Engines;281
35.3.3;2.3 Mathematical Equations;283
35.3.4;2.4 State of the Art Research Technology Availableat Technical University;283
35.4;3 Materials and Method;284
35.4.1;3.1 Test Bench Components and Materials;284
35.4.2;3.2 Method of Investigation;284
35.4.3;3.3 Test Procedures;285
35.5;4 Analyze of the Experimental Results;286
35.5.1;4.1 Engine Torque and Speed Measurement;286
35.5.2;4.2 Engine Parameters on Graphic Charts;286
35.6;5 Conclusion;287
35.7;Acknowledgements;288
35.8;References;288
36;Study on a Stratified Charge Spark Ignition Automotive Engine;289
36.1;Abstract;289
36.2;1 Introduction;289
36.3;2 The Constructive Solution;290
36.4;3 Experimental Tests;294
36.5;4 Experimental Results;295
36.6;5 Conclusions;300
36.7;References;301
37;Researches on Cooling Air Flow Control Devices Using on Cars with Internal Combustion Engines;302
37.1;Abstract;302
37.2;1 Introduction;302
37.3;2 Experimental Method;303
37.4;3 Experimental Data;305
37.5;4 Analysis of Experimental Data;308
37.6;5 Conclusions;308
37.7;References;309
38;Modeling the Energy Evaluation for an Electric Machine;310
38.1;Abstract;310
38.2;1 Introduction;310
38.3;2 Modeling and Simulation;311
38.3.1;2.1 The Electric Machine Functional Model;311
38.3.2;2.2 The Electric Machine Thermal Model;313
38.3.3;2.3 The Electric Machine Simulation Model;315
38.4;3 Simulation Results;315
38.5;4 Conclusions;317
38.6;References;318
39;Balancing of a Single Stage Reciprocating Compressor with Elastic Elements;320
39.1;Abstract;320
39.2;1 Introduction;320
39.3;2 Multibody Model;321
39.3.1;2.1 Dynamics;321
39.4;3 Results;322
39.5;4 Conclusions;324
39.6;References;325
40;The Calculation Algorithm for the Determination of the Temperature at the End of the Intake Stroke for GDI Engines;326
40.1;Abstract;326
40.2;1 Introduction;326
40.3;2 The Operational Scheme of the Proposed Propulsion System;327
40.4;3 Conclusions;332
41;Diagnosing the Operation of a Locomotive Diesel Engine Based on the Analysis of Used Oil in the Period Between Two Technical Revisions;334
41.1;Abstract;334
41.2;1 Introduction;334
41.3;2 Monitoring on Lubricating Oil – Case Study on DHLe;335
41.4;3 Chemico - Physical Characterization of Oil;336
41.4.1;3.1 Viscosity;336
41.4.2;3.2 Flash Point and Dilution;337
41.4.3;3.3 Density;338
41.4.4;3.4 Water Content;338
41.4.5;3.5 Determination of Oil Degradation - Oil Stain Analysis;339
41.4.6;3.6 Metal Analysis X-Ray Fluorescence Spectrometry;340
41.5;4 Results and Discussion;340
41.6;5 Conclusions;341
41.7;References;342
42;Heavy and Special Vehicles;343
43;Simultaneous Influences of Tyre Pressure and Steering Geometry upon the Theoretical Speed Ratio in the Running Gear System of Four-Wheel Drive Tractors;344
43.1;Abstract;344
43.2;1 Mathematical Modelling of the Theoretical Speed Ratio in the Running Gear System of Four-Wheel Drive Tractors in a Straight Line Motion;344
43.3;2 Mathematical Modelling of Theoretical Speed Ratio in the Running Gear System of Four-Wheel Drive Tractors During Cornering;345
43.4;3 Effect of Theoretical Speed Ratio on the Slips of the Front and Rear Tyres of a Four-Wheel-Drive Tractor with Rigid Interaxial Coupling;347
43.5;4 Applications of the Mathematical Model Developed;347
43.6;5 Conclusions;350
43.7;References;351
44;Analysis of the Comfort of the Seats Used in Light Military Vehicles;352
44.1;Abstract;352
44.2;1 Introduction;352
44.3;2 The Stresses Transmitted to Seat;353
44.4;3 Data Analysis and the Influence Over Comfort;355
44.4.1;3.1 The Multidirectional Analysis of the Vibration;357
44.5;4 Conclusions;359
44.5.1;4.1 Research Directions for Improving Comfort;359
44.6;References;360
45;Aspects Regarding the Kinematic Optimization of a Tracked Military Vehicle’s Transmission;361
45.1;Abstract;361
45.2;1 Introduction;361
45.3;2 Intermediate Gear Drive Analysis by Simulating Its Work Within the General Simulation Model;362
45.4;3 Comparing the Data Obtained by Simulation;364
45.5;4 Conclusions;366
45.6;Acknowledgments;366
45.7;References;366
46;Automobile and Environment;367
47;Research on Gasoline Homogenous Charge Compression Ignition (HCCI) Engine;368
47.1;Abstract;368
47.2;1 Introduction;368
47.3;2 Gasoline HCCI;370
47.3.1;2.1 Principle of Engine Operation;370
47.3.2;2.2 Control of HCCI Combustion;371
47.4;3 Experimental Setup;373
47.5;4 Research Results;373
47.6;5 Conclusions;380
47.7;References;380
48;Study of the Diesel Engine Cycle Variability at LPG Fuelling;382
48.1;Abstract;382
48.2;1 Introduction;382
48.3;2 Cycle Variability Study;384
48.4;3 Results;385
48.5;4 Conclusions;388
48.6;Acknowledgements;388
48.7;References;389
49;Direct Injection of Diesel and Ethanol in a Diesel Engine - A Numerical Analysis;390
49.1;Abstract;390
49.2;1 Introduction;390
49.3;2 Methodology;390
49.4;3 Validation and Results;392
49.5;4 Conclusions;396
49.6;Acknowledgement;397
49.7;References;397
50;The Effects of a Diesel-Ethanol Blend Without Additives on Diesel Engine Operation;398
50.1;Abstract;398
50.2;1 Introduction;398
50.3;2 Methodology;399
50.4;3 Results;401
50.5;4 Conclusions;404
50.6;Acknowledgement;404
50.7;References;405
51;The Influence of Biodiesel on Engine Combustion and CO2 Emissions;406
51.1;Abstract;406
51.2;1 Introduction;406
51.3;2 Simulation Model;407
51.4;3 Experimental Equipment and Test Description;409
51.5;4 Results;410
51.6;5 Conclusions;412
51.7;References;413
52;Modeling the Performances of a Vehicle Provided with a Spark Ignition Engine Using a Double Energy Source, Gasoline and Liquefied Petroleum Gas;414
52.1;Abstract;414
52.2;1 Introduction;414
52.2.1;1.1 Description of the Model;415
52.3;2 Experimental;416
52.4;3 Results and Discussions;420
52.5;4 Conclusions;424
52.6;References;425
53;Modeling the Performances of a Vehicle Provided with a Hybrid Electric Diesel Propulsion System (HEVD);426
53.1;Abstract;426
53.2;1 Introduction;426
53.3;2 The Presentation of the Model;427
53.4;3 Results and Discussions;434
53.5;4 Conclusions;436
53.6;References;437
54;Aspects of Experimental Research on Hydrogen Fuelled Automotive Diesel Engine;438
54.1;Abstract;438
54.2;1 Introduction;438
54.3;2 Methodology of Experimental Investigation;439
54.4;3 Results;441
54.5;4 Conclusions;444
54.6;Acknowledgements;444
54.7;References;445
55;Researches on Combustion Quality for a Single Cylinder Diesel Engine;446
55.1;Abstract;446
55.2;1 Introduction;446
55.3;2 Combustion Quality Evaluation for Diesel Engines;446
55.4;3 Used Equipments;448
55.5;4 Research Methodology;449
55.6;5 Conclusions;451
55.7;Acknowledgements;452
55.8;References;452
56;Urban Transportation Solutions for the CO2 Emissions Reduction Contributions;453
56.1;Abstract;453
56.2;1 Introduction;453
56.3;2 The Analyzed Area;454
56.4;3 Energy Consumption and CO2 Mitigation Model for S?cele;455
56.4.1;3.1 Mathematical Model for S?cele Transportation System;455
56.4.2;3.2 Vehicle Fleet Renewal;457
56.4.3;3.3 Increasing the Average Travel Speed;457
56.4.4;3.4 Bicycle Lanes for S?cele;458
56.4.5;3.5 Students Mobility Management;459
56.5;4 Conclusions;459
56.6;Acknowledgements;460
56.7;References;460
57;Mission CO2 Reduction;462
57.1;Abstract;462
57.2;1 Introduction;462
57.3;2 Improving the Efficiency of the Powertrain and the Challenges to Be Overcome;463
57.4;3 Vibration Isolation – State of the Art;464
57.5;4 Alternative Solutions – Options and the Operating Principles That Define Them;465
57.6;5 Spring-mass System – Principle of the Dual-mass Flywheel;466
57.7;6 Anti-resonance – Principle of Interference;467
57.8;7 The Spring-mass Absorber;467
57.9;8 The Summation Damper;469
57.10;References;472
58;Experimental Research Concerning the Influence of the Electrochemical Reactions Induced by Products of an Electrolytic Cell Over the Emission Pollutants in ICE;473
58.1;Abstract;473
58.2;1 Introduction;473
58.3;2 Content;474
58.4;3 Hypothesis;476
58.5;4 The Experimental Unit;477
58.6;5 Test Results;478
58.7;6 Conclusions: “ECO” Maintenance System and Beyond;480
58.8;References;481
59;Energy-Based Approach to Model a Hybrid Electric Vehicle and Design Its Powertrain Controller and Energy Management Strategy;482
59.1;Abstract;482
59.2;1 Introduction;482
59.3;2 Powertrain Architecture;483
59.4;3 Powertrain Design and Model;483
59.4.1;3.1 Energetic Macroscopic Representation;483
59.4.2;3.2 EMR of the Studied Model;484
59.5;4 Powertrain Controller;486
59.5.1;4.1 Maximum Control Structure;486
59.5.2;4.2 MCS of the Studied Model;486
59.6;5 Energy Management Strategy;488
59.7;6 Results;489
59.8;7 Conclusion;490
59.9;Appendix A: Synoptic of Energetic Macroscopic Representation;491
59.10;References;491
60;Dynamic Control of an Electric Vehicle with Traction Induction Motor;493
60.1;Abstract;493
60.2;1 Introduction;493
60.3;2 Vehicle Propulsion Dynamics;494
60.3.1;2.1 Motion Forces;494
60.3.2;2.2 Traction Induction Motor;495
60.4;3 Dynamic Control of the Vehicle;496
60.4.1;3.1 Traction Control;496
60.4.2;3.2 Induction Motor Control;497
60.4.3;3.3 Vehicle Dynamics;498
60.5;4 Practical Results;499
60.6;5 Conclusions;500
60.7;References;501
61;A Propulsion System for Means of Transport with Non-autonomous Electrical Traction;502
61.1;Abstract;502
61.2;1 Introduction;502
61.3;2 The Operational Scheme of the Proposed Propulsion System;503
61.4;3 An Experimental Model to Demonstrate the Advantages of the Proposed Concept;505
61.5;4 Conclusions;506
61.6;References;507
62;Validation of a Human-and-Hardware-in-the-Loop Control Algorithm Using Real Time Simulation;508
62.1;Abstract;508
62.2;1 Introduction;508
62.3;2 Electric Vehicle Model;509
62.4;3 The Control Algorithm;514
62.5;4 Validation of the Control Algorithm Using Real Time Simulation;514
62.6;5 Conclusions;518
62.7;Acknowledgements;518
62.8;References;518
63;Electronic Control Systems of E-Smart Vehicle;520
63.1;Abstract;520
63.2;1 Introduction;520
63.3;2 E-Smart Vehicle Electronic Devices;521
63.3.1;2.1 Electronic Control Module;521
63.3.2;2.2 System Electronic Interface (SEI);523
63.3.3;2.3 Battery Management System;523
63.4;3 E-Smart Vehicle Functionality;524
63.4.1;3.1 E-Smart Driving Modes;524
63.4.2;3.2 E-Smart Motor Parameters;525
63.5;4 Conclusions;527
63.6;References;527
64;Battery Management System of E-Smart Vehicle;528
64.1;Abstract;528
64.2;1 Introduction;528
64.3;2 E-Smart Vehicle Battery Management Components;529
64.3.1;2.1 Batteries;529
64.3.2;2.2 Batteries Charger;530
64.3.3;2.3 Battery Management System;530
64.3.4;2.4 Parameters Display System;532
64.4;3 E-Smart Battery Management Functionality;532
64.4.1;3.1 E-Smart Test Procedures;532
64.4.2;3.2 E-Smart Batteries Pack Parameters;532
64.5;4 Conclusions;534
64.6;References;535
65;New Materials, Manufacturing Technologies and Logistics;536
66;Worldwide Diversity Management of “Global Access” Renault/Dacia’s Vehicle Range by Using a Modern PLM System;537
66.1;Abstract;537
66.2;1 Context;537
66.3;2 Complexity of “Global Access” Range of Renault/Dacia;537
66.3.1;2.1 About Renault Technologie Roumanie (RTR);537
66.3.2;2.2 Managing Diversity;539
66.4;3 The Renault’s Modern PLM Platform;541
66.4.1;3.1 Why PLM?;541
66.4.2;3.2 Choosing the Right and Tailored PLM Platform;541
66.4.3;3.3 Advantages – Why DS’ V6?;542
66.5;4 Case Study: The Worldwide Administration/Tracking of a BIW Common Part: Rear Skirt (End-Panel) of Sandero;543
66.6;References;545
67;Potential Capabilities of Shape Memory Driven Automotive Devices;546
67.1;Abstract;546
67.2;1 Introduction;546
67.3;2 State of Art of Shape Memory Alloys;547
67.3.1;2.1 Physical Effects and Fundamental Material Mechanisms;547
67.3.2;2.2 Available Alloys: Characteristics and Limitations;551
67.3.3;2.3 Potential Capabilities for SMAs in Automotive Applications;552
67.4;3 Examples for the Use of SMA in Automotive Devices;552
67.4.1;3.1 Overview of Potential Applications;552
67.4.2;3.2 First Serial Automotive Application: SMA Pneumatic Valves for Lumbar Support in Car’s Seats;552
67.4.3;3.3 Further Potential Applications;554
67.5;4 Summary and Outlook;555
67.6;References;555
68;Applicability of Composite Forming Technologies for Automotive Components;557
68.1;Abstract;557
68.2;1 Introduction;557
68.3;2 Technologies Used for Steering Column Components;557
68.3.1;2.1 Autoclave Technology;559
68.3.2;2.2 RTM Technology;561
68.3.3;2.3 Winding Space Technology;563
68.4;3 Conclusion;564
68.5;References;565
69;Constructive Optimization of Composite Materials Automotive Components;566
69.1;Abstract;566
69.2;1 Introduction;566
69.3;2 Concept Evolution for Steering Column Console Using Space Winding Technology;567
69.3.1;2.1 Version 1;567
69.3.2;2.2 Version 2;569
69.4;3 Conclusion;573
69.5;References;574
70;The Evaluation of Rheological Properties of Composites Reinforced with Hemp, Subjected to Photo and Thermal Degradation;575
70.1;Abstract;575
70.2;1 Introduction;575
70.3;2 Materials and Experimental Method;577
70.3.1;2.1 Materials;577
70.3.2;2.2 Experimental Methods;577
70.4;3 Results and Discussion;578
70.4.1;3.1 The Determination of the Surface Roughness Before and After Exposure to UV Radiation by Means AFM;578
70.4.2;3.2 The Evaluation of the Dynamic Modulus and Damping Coefficient for Different Frequencies of Dynamic Loads;579
70.4.3;3.3 The Assessment of Dynamic (Complex) Modulus and Damping Coefficient with Increasing the Temperature;581
70.5;4 Conclusion;583
70.6;Acknowledgement;583
70.7;References;583
71;Optimization of the Plastic Injection Molding Parameters by Using the Taguchi Method to Prevent Jammed Components in the Assembly Process of Mechatronic Devices;585
71.1;Abstract;585
71.2;1 Introduction;586
71.3;2 Taguchi Method;588
71.4;3 Study Regarding the Optimization of the Plastic Injection Molding Parameters;588
71.4.1;3.1 Material, Machine and Parameter Selection;588
71.4.2;3.2 Selection of Orthogonal Array;589
71.4.3;3.3 Shrinkage Measurements;590
71.4.4;3.4 Shrinkage Values and S/N Ratio;590
71.5;4 Results and Interpretation;591
71.5.1;4.1 ANOVA Analysis;593
71.6;5 Conclusions;593
71.7;References;594
72;Key Characteristics of the World Class Manufacturing Concept in the Production of Chassis for Buses Industry;595
72.1;Abstract;595
72.2;1 Introduction;595
72.3;2 World Class Business Process Management;597
72.4;3 Technical and Managerial Pillars of WCM;597
72.5;4 Appling WCM in the Buses Industry;598
72.6;5 Conclusions;600
72.7;References;601
73;Advanced Automotive Assembly Line Trends as Tools in Optimizing Production Line Performance;602
73.1;Abstract;602
73.2;1 Introduction;602
73.3;2 Configurative Variations of the Assembly Line;603
73.3.1;2.1 Team Based Assembly;604
73.3.2;2.2 Modular Assembly;605
73.3.3;2.3 Cell Assembly;605
73.3.4;2.4 “U” Shape Assembly Line;605
73.4;3 Advanced Automotive Assembly Line Trends;606
73.5;4 Conclusion;607
73.6;References;608
74;Cleaning Methods for Flux Pollution Measurement in Automotive CoolantLoop Components;609
74.1;Abstract;609
74.2;1 Introduction;609
74.3;2 Cleaning Methods;611
74.4;3 Measuring Methods;614
74.5;4 Flux Deposit Processes;614
74.6;5 Results;616
74.7;6 Discussion;618
74.8;7 Conclusion;618
74.9;References;618
75;Design and Development of Chassis Along with Novel Under Run Protection Devices for Commercial Vehicles with the Use of an Innovative Approach Resulting in Lighter Weight of the Vehicle;620
75.1;Abstract;620
75.2;1 Introduction;620
75.2.1;1.1 Frame Overview;621
75.2.2;1.2 Under Run Protection Devices;621
75.3;2 Development Phases with Virtual Validations;622
75.3.1;2.1 Frame;622
75.3.2;2.2 The Underrun Protection Devices;625
75.4;3 Physical Validation;627
75.5;4 Conclusion;628
75.6;Acknowledgments;628
75.7;References;629
76;The Quality Management Principles and Their Incidence Within ISO 9001:2015;630
76.1;Abstract;630
76.2;1 Introduction;630
76.3;2 The Quality Management Principles Within the ISO 9001;631
76.3.1;2.1 The Structure of the New ISO 9001:2015;631
76.3.2;2.2 The New Set of Quality Management Principles;632
76.4;3 Data Analysis for the Researched Study;632
76.5;4 Conclusions;636
76.6;5 New Developments for ISO/TS 16949 According with the ISO 9001 Family of Standards Changes;637
76.7;References;637
77;Product Quality Control Optimization for Selection of Measurement and Control Devices;639
77.1;Abstract;639
77.2;1 General Information;639
77.3;2 Actual Principles for Methods and Devices for Product Quality Control and Measurement Selection;640
77.4;3 Optimized Selection of Measurement and Control Devices from the Point of Time in Service Cost of the Equipment’s Used for Product Quality Verification;640
77.5;4 Conclusions;644
77.6;References;644
78;Improvement of the 8D Analysis Through a System Based on the “Internet of Things” Concept Applied in Automotive Industry;645
78.1;Abstract;645
78.2;1 Introduction;645
78.3;2 The Solution Presentation;647
78.4;3 The Central Station and Client Application;648
78.5;4 The Radio Network;649
78.6;5 The Endpoints from Workstations and Warehouse;650
78.7;6 Conclusions;651
78.8;References;652
79;A Case Study Regarding the Implementation of Six Sigma in an Assembly Process for the Automotive Parts;653
79.1;Abstract;653
79.2;1 Introduction;653
79.3;2 Implementation of Six Sigma. Case Study;654
79.3.1;2.1 Define Phase;654
79.3.2;2.2 Measure Phase;655
79.3.3;2.3 Analyze Phase;656
79.3.4;2.4 Improvement Phase;656
79.3.5;2.5 Control Phase;657
79.4;3 Conclusions;660
79.5;References;660
80;Advanced Transport Systems and Road Traffic;661
81;Analysis of the Influence of One-Way Streets on the Urban Road Networks Connectivity;662
81.1;Abstract;662
81.2;1 Introduction;662
81.3;2 One-Way Streets Particularities;663
81.4;3 Connectivity in Road Networks;664
81.4.1;3.1 Road Networks Representation;664
81.4.2;3.2 Basics of Graph Theory and Connectivity;665
81.4.3;3.3 Topological Measures of the Graph;666
81.4.4;3.4 The Influence of One-Way Streets on the Connectivity Indicators in Intersections;669
81.5;4 Analysis of the Civic Center Area of the Brasov City Network;670
81.5.1;4.1 Primal and Dual Graph for the Road Network with One-Way Streets (Scenario S1 – Real Situation);671
81.5.2;4.2 Primal and Dual Graph for Two-Way Road Network (Scenario S2);672
81.6;5 Conclusions;675
81.7;References;675
82;Cooperative Smart Intersection as an Enabler of Advanced Traffic Management Systems;677
82.1;Abstract;677
82.2;1 Introduction;677
82.3;2 Cooperative Smart Intersection;678
82.3.1;2.1 Application Insights;678
82.3.2;2.2 Challenges;679
82.3.3;2.3 Benefits and Future Evolutions;679
82.4;3 Impact Assessment;680
82.4.1;3.1 Evaluation Context and Experiments Set-up;680
82.4.2;3.2 Data Elaboration Process;680
82.4.3;3.3 Discussion on Results;681
82.5;4 Conclusions;682
82.6;Acknowledgements;683
82.7;References;683
83;Bus Routing Safety for the Transportation of Children to School;685
83.1;Abstract;685
83.2;1 Introduction;685
83.3;2 Methodology for Solving the SBRP in SAFEWAY2SCHOOL;686
83.3.1;2.1 Safe Map;686
83.3.2;2.2 Safety Criteria Used in the Presented Methodology;687
83.3.3;2.3 Pedestrian Routing;688
83.3.4;2.4 School Bus Routing;689
83.4;3 Conclusions;691
83.5;Acknowledgements;692
83.6;References;692
84;Improving the Road Traffic Regulation in the Area of Roundabout Intersections Function of the Traffic Streams Size;693
84.1;Abstract;693
84.2;1 Stating the Problem and the Objectives;693
84.3;2 Mathematical Modeling of Traffic Flows in a Roundabout;695
84.3.1;2.1 The 3-Arm Roundabout;696
84.3.2;2.2 The 4-Arm Roundabout;697
84.4;3 Synthesis of the Theoretical Results Obtained;698
84.5;4 Research Based on Traffic Observations for the Purposes of Submitting Proposals on Road Traffic Organization in the Podul Viilor Area;699
84.6;5 Proposals for Improving Traffic Regulation;701
85;Traffic Optimization in Urban Area - Roundabout Versus Lights Case Studies;703
85.1;Abstract;703
85.2;1 Introduction;703
85.3;2 Roundabout and Signals Traffic Capacity Evaluation;704
85.4;3 Case Study;706
85.4.1;3.1 Traffic Data;706
85.4.2;3.2 Results and Discussions;707
85.5;4 Conclusion;709
85.6;References;710
86;Mathematical Algorithm for Calculating the Total Traffic Lights Cycle in Junctions;711
86.1;Abstract;711
86.2;1 Introduction;711
86.3;2 Grouping Movements in Intersection;712
86.3.1;2.1 Possible Combinations of Moves for the 4 Arms;712
86.4;3 Traffic Light Cycle Calculation;715
86.4.1;3.1 Input Data in the Mathematical Algorithm;715
86.4.2;3.2 Saturation Flow;715
86.4.3;3.3 Traffic Light Cycle;716
86.5;4 Conclusion;718
86.6;References;718
87;Study on the Influence of Intersections with Forest Roads upon the Traffic Flows on Highways;719
87.1;Abstract;719
87.2;1 Introduction;719
87.3;2 Materials and Methods;719
87.3.1;2.1 Research Method;720
87.3.2;2.2 Instrumented Vehicle;720
87.3.3;2.3 Research Site;720
87.3.4;2.4 Data Acquisition Equipment;722
87.3.5;2.5 Conducting the Experiments;722
87.4;3 Data Processing and Results;723
87.4.1;3.1 Speed Variation Depending on Distance;725
87.4.2;3.2 Determination of the Speeds V15, V50 and V85;725
87.5;4 Conclusions;728
87.6;5 Proposals;728
87.7;References;729
88;Smart Solar Electric Tricycle;730
88.1;Abstract;730
88.2;1 Introduction;730
88.3;2 Electric Schematic of the Solar Tricycle;731
88.4;3 Resistive Forces and Tricycle Performance;732
88.5;4 Traffic Light Simulation and Data Processing;734
88.6;5 Simulation Results;735
88.7;6 Conclusion;737
88.8;References;737
89;Programming an Autonomous Mini-vehicle in Narrow Environments;738
89.1;Abstract;738
89.2;1 Introduction;738
89.3;2 Materials and Methods;739
89.3.1;2.1 The Hardware and Software Architecture of the Autonomous Mini-Vehicle;739
89.3.2;2.2 The Trajectory Planning Algorithm and Programing;740
89.4;3 Test Cases;742
89.5;4 Conclusions;744
89.6;Acknowledgment;745
89.7;References;745
90;About Uncontrollable Reactions of the Driver Due to Skin Mechanical Stimuli;746
90.1;Abstract;746
90.2;1 Introduction;746
90.3;2 State of the Art;747
90.3.1;2.1 About Vibro-Tactile Stimuli;747
90.3.2;2.2 About Neuro Biological Implications of Mechanical Stimuli Reaction;748
90.4;3 Materials and Methods;749
90.5;4 Results;750
90.6;5 Conclusion;753
90.7;Acknowledgements;753
90.8;References;753
91;Development of an Advanced Driver Assistance System Using RGB-D Camera;755
91.1;Abstract;755
91.2;1 Introduction;755
91.3;2 Development of the ADAS System;756
91.4;3 Evaluation of the Developed ADAS System;757
91.5;4 Conclusions;759
91.6;Acknowledgment;759
91.7;References;760
92;A Method for Transforming Electric Vehicles to Become Autonomous Vehicles;761
92.1;Abstract;761
92.2;1 Introduction;761
92.3;2 State of the Art;762
92.3.1;2.1 Electric Vehicles Architectures;762
92.3.2;2.2 Sensors;763
92.3.3;2.3 Mapping and Path Planning Algorithms;763
92.4;3 Hardware Architecture;763
92.4.1;3.1 Steering System;765
92.4.2;3.2 Brake and Acceleration System;765
92.4.3;3.3 System Level Sensors;766
92.5;4 Software Architecture;767
92.5.1;4.1 SLAM, Odometry and Path Planning;767
92.6;5 Safety Concept;768
92.7;6 Test and Validation;769
92.8;7 Conclusion;770
92.9;References;770
93;Accident Research and Analysis;771
94;Cars Crashes with Cars of Same or Different Generation – Occupant’s Loads, Timings and Acceleration’s Effects;772
94.1;Abstract;772
94.2;1 Introduction;772
94.3;2 Experimentals Tests;777
94.4;3 Conclusion;785
94.5;REFERENCES;788
95;Crash Tests Data Acquisition and Processing;789
95.1;Abstract;789
95.2;1 Introduction;789
95.3;2 Data Acquisition;790
95.3.1;2.1 Acceleration Measurement;790
95.3.2;2.2 Speed Measurement;792
95.4;3 Data Processing - Filtering;792
95.5;4 Crash Tests - Results;794
95.6;5 Conclusions;796
95.7;References;796
96;Research Regarding Occupant’s Movement in the Case of Frontal Collision Using High-Speed Video Recording;797
96.1;Abstract;797
96.2;1 Introduction;797
96.3;2 Objectives;798
96.4;3 Methods and Equipment Used;798
96.5;4 Results;799
96.6;5 Conclusions;804
96.7;References;804
97;Research Regarding the Influence of Vehicle’s Safety Restraint Systems on Its Occupants in Case of Rear-End Collision;805
97.1;Abstract;805
97.2;1 Introduction;805
97.3;2 Objectives;805
97.4;3 Methods and Equipment Used;806
97.5;4 Results;807
97.6;5 Conclusions;811
97.7;References;811
98;The Assessment of the Head Injury of a Pedestrian in Comparison with a Cyclist;812
98.1;Abstract;812
98.2;1 Introduction;812
98.3;2 Methodology;813
98.4;3 Results;814
98.5;4 Assessment of the Head Injury Risk;816
98.6;5 Conclusions;817
98.7;References;817
99;Determination of Kinematic and Dynamic Behavior in the Driver’s Skull upon the Impact with the Steering Wheel;819
99.1;Abstract;819
99.2;1 Introduction;819
99.3;2 The Virtual Prototyping of the Frontal Impact for a Complex Dummy-Vehicle-Safety Systems Structure;820
99.3.1;2.1 Vehicle Law of Motion During the Impact;820
99.3.2;2.2 The Dummy-Vehicle Model;821
99.3.3;2.3 The Kinematic and the Dynamic Behavior in the Dummy Head Area;822
99.4;3 Skull-Steering Wheel Impact Modeling;823
99.5;4 Conclusion;825
99.6;References;826
100;Pedestrian Dynamics During the Contact Phase with the Vehicle;827
100.1;Abstract;827
100.2;1 Introduction;827
100.3;2 General Simplified Model Illustrating the Movement of a Hit Body;828
100.4;3 Analysis of the Pedestrian Dynamics During the Contact Phase with the Vehicle;829
100.4.1;3.1 Sub-phase Between Primary Impact and Secondary Impact;829
100.4.2;3.2 Phase 1.2 After Secondary Impact Until the Flying/Falling Phase;832
100.5;4 Conclusions;833
100.6;References;834
101;Example of a High-Speed, Side-Impact, Car Crash Reconstruction Using a Planar Multibody Software;836
101.1;Abstract;836
101.2;1 Introduction;836
101.3;2 Accident Description;837
101.4;3 Computer Simulation;838
101.5;4 Results;839
101.6;5 Conclusions;840
101.7;APPENDIX 1: Geometry of the 2004 SKODA Octavia;840
101.8;APPENDIX 2: Geometry of the 2004 BMW Series 3 Touring;841
101.9;References;841
102;Is the Virtual Homologation for Pedestrian Protection Viable?;843
102.1;Abstract;843
102.2;1 Pedestrian Safety Systems;843
102.3;2 Pedestrian Crash Dynamics;844
102.4;3 Pedestrian Injury Biomechanics;845
102.5;4 Pedestrian Protection Homologation Tests;845
102.6;5 Virtual Test of a Pedestrian Crash;846
102.7;6 Results;847
102.8;7 Conclusion;849
102.9;References;850
103;Comparative Analysis of Kinematics and Dynamics Parameters that Characterize Vehicle-Pedestrian Collision;851
103.1;Abstract;851
103.2;1 Introduction;851
103.3;2 Circumstances of the Traffic Accident;852
103.4;3 Reconstruction of the Specific Parameters of the Vehicle-Pedestrian Traffic Accident;854
103.4.1;3.1 Reconstruction of the Specific Parameters of the Vehicle-Pedestrian Traffic Accident Using Analytical Methods with Numerical Solutions;854
103.4.2;3.2 Reconstruction of the Specific Parameters of the Vehicle-Pedestrian Traffic Accident Using Analytical Methods;857
103.5;4 Conclusions;861
103.6;References;861
104;The Importance of Consumed Energy for Deformation in Study of Collision;863
104.1;Abstract;863
104.2;1 Introduction;863
104.3;2 Side Impact Energy;864
104.4;3 Yaw Movement;867
104.5;4 Experimental Analysis and Electronics;869
104.6;5 Conclusions;870
104.7;References;870
105;Aspects Regarding the Reconstruction of Traffic Events;872
105.1;Abstract;872
105.2;1 Introduction;872
105.3;2 Linear Momentum and Principal Direction of Force;873
105.3.1;2.1 Principal Direction of Force;874
105.4;3 Occupant Dynamics;877
105.5;4 Experimental Analysis and Electronics;878
105.6;5 Conclusions;879
105.7;References;879
106;Vehicle Driver Drowsiness Monitoring and Warning System;880
106.1;Abstract;880
106.2;1 Introduction;880
106.3;2 Preliminary Results;881
106.4;3 Presentation of the Concept;884
106.5;References;886
107;Research Regarding Pedestrian Visibility During Night-Time Using Photo Processing;888
107.1;Abstract;888
107.2;1 Introduction;888
107.3;2 Methodology;889
107.4;3 Results;890
107.4.1;3.1 First Scenario – Source Vehicle Having Low Beams Turned on;891
107.4.2;3.2 Second Test Scenario – Source Vehicle Having the High-Beams On;891
107.4.3;3.3 Third Test Scenario – the Source Vehicle and the Oncoming Vehicles Have the Low Beams Turned on;892
107.5;4 Calculation of the Initial Car Velocity in Order to Avoid the Collision with the Pedestrian;893
107.6;5 Conclusions;895
107.7;References;895
108;Estimating the Costs Caused by Road Traffic Accidents in Romania;896
108.1;Abstract;896
108.2;1 Introduction;896
108.3;2 The Method;897
108.4;3 Costs Components;898
108.4.1;3.1 Classification of the Road Accidents and Injured Persons;898
108.4.2;3.2 Costs’ Structure;898
108.4.3;3.3 Total Costs;903
108.5;4 Conclusions;904
108.6;Acknowledgments;904
108.7;References;904



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.