Buch, Englisch, 310 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 474 g
Buch, Englisch, 310 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 474 g
ISBN: 978-1-032-24015-2
Verlag: CRC Press
This book is devoted to research in the actual field of mathematical modeling in modern problems of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse. The author explores the hydrodynamic model of the wake wave in detail and from different points of view, within the framework of its regular propagation, a development suitable for accelerating electrons, and the final tipping effect resulting in unregulated energy transfer to plasma particles.
Key selling features:
- Presents research directly related to the propagation of super-power short laser pulses (subject of the 2018 Nobel Prize in Physics).
- Presents mathematical modeling of plasma physics associated with vibrations and wake waves excited by a short high-power laser pulse.
- Includes studies of large-amplitude plasma oscillations.
- Most of the presented results are of original nature and have not appeared in the domestic and foreign scientific literature
- Written at a level accessible for researchers, academia, and engineers.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Free plasma oscillations. Introductory Information. Planar one-dimensional non-relativistic oscillations (P1NE-equations). Planar one-dimensional relativistic oscillations (P1RE-equations). Cylindrical one-dimensional oscillations (equations C1RE and C1NE). Influence of ion dynamics (P1EI-equations). Planar two-dimensional relativistic oscillations (P2RE-equations). Plasma wake waves. Preliminary information. Numerical Algorithms for the Basic Task. Additional Studies. Literature.