Chowdhury / Bhandarkar | Computer Vision-Guided Virtual Craniofacial Surgery | E-Book | www.sack.de
E-Book

E-Book, Englisch, 166 Seiten

Reihe: Advances in Computer Vision and Pattern Recognition

Chowdhury / Bhandarkar Computer Vision-Guided Virtual Craniofacial Surgery

A Graph-Theoretic and Statistical Perspective
1. Auflage 2011
ISBN: 978-0-85729-296-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Graph-Theoretic and Statistical Perspective

E-Book, Englisch, 166 Seiten

Reihe: Advances in Computer Vision and Pattern Recognition

ISBN: 978-0-85729-296-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This unique text/reference discusses in depth the two integral components of reconstructive surgery; fracture detection, and reconstruction from broken bone fragments. In addition to supporting its application-oriented viewpoint with detailed coverage of theoretical issues, the work incorporates useful algorithms and relevant concepts from both graph theory and statistics. Topics and features: presents practical solutions for virtual craniofacial reconstruction and computer-aided fracture detection; discusses issues of image registration, object reconstruction, combinatorial pattern matching, and detection of salient points and regions in an image; investigates the concepts of maximum-weight graph matching, maximum-cardinality minimum-weight matching for a bipartite graph, determination of minimum cut in a flow network, and construction of automorphs of a cycle graph; examines the techniques of Markov random fields, hierarchical Bayesian restoration, Gibbs sampling, and Bayesian inference.

Chowdhury / Bhandarkar Computer Vision-Guided Virtual Craniofacial Surgery jetzt bestellen!

Weitere Infos & Material


1;Foreword;6
2;Preface;8
3;Contents;12
4;List of Figures;15
5;List of Tables;20
6;Part I: Overview and Foundations;21
6.1;Chapter 1: Introduction;22
6.1.1;1.1 Craniofacial Fractures;22
6.1.2;1.2 State-of-the-Art Virtual Craniofacial Surgery;27
6.1.3;1.3 The Importance of Computer-Assisted Surgical Planning;28
6.1.4;1.4 Organization of the Monograph;31
6.2;Chapter 2: Graph-Theoretic Foundations;33
6.2.1;2.1 Some Basic Terminology;33
6.2.2;2.2 Matchings in Graphs;35
6.2.3;2.3 Isomorphism and Automorphism of Graphs;37
6.2.4;2.4 Network Flows;38
6.3;Chapter 3: A Statistical Primer;42
6.3.1;3.1 Probability;42
6.3.2;3.2 Statistical Inference;45
6.3.3;3.3 Bayesian Statistics;47
6.3.4;3.4 Random Fields, Bayesian Restoration, and Stochastic Relaxation;49
7;Part II: Virtual Craniofacial Reconstruction;52
7.1;Chapter 4: Virtual Single-Fracture Mandibular Reconstruction;53
7.1.1;4.1 Motivation;53
7.1.2;4.2 Chapter Organization;53
7.1.3;4.3 Related Work and Our Contribution;54
7.1.4;4.4 Image Processing;55
7.1.4.1;4.4.1 Thresholding;57
7.1.4.2;4.4.2 Connected Component Labeling;58
7.1.4.3;4.4.3 Contour Data Extraction;58
7.1.5;4.5 Surface Matching Using Type-0 Constraints;59
7.1.5.1;4.5.1 Surface Registration Using the ICP Algorithm;59
7.1.5.2;4.5.2 Registration Using the DARCES Algorithm;61
7.1.5.3;4.5.3 Registration Using the Hybrid DARCES-ICP Algorithm;62
7.1.6;4.6 Improved Surface Matching with Surface Irregularity Modeling;63
7.1.6.1;4.6.1 Curvature-Based Surface Irregularity Estimation;63
7.1.6.2;4.6.2 Fuzzy Set Theory-Based Surface Irregularity Extraction;65
7.1.6.3;4.6.3 Reward/Penalty Schemes;66
7.1.7;4.7 Improved Surface Matching with Type-1 Constraints;67
7.1.7.1;4.7.1 Cycle Graph Automorphs as Initial ICP States;68
7.1.7.2;4.7.2 Selection of the Best Initial State;68
7.1.7.3;4.7.3 Registration Using the Hybrid Geometric-ICP Algorithm;70
7.1.8;4.8 Bilateral Symmetry of the Human Mandible;71
7.1.9;4.9 Biomechanical Stability of the Human Mandible;72
7.1.10;4.10 Composite Reconstruction Using MSE, Symmetry, and Stability;74
7.1.11;4.11 Experimental Results;76
7.1.12;4.12 Conclusion and Future Work;81
7.2;Chapter 5: Virtual Multiple-Fracture Mandibular Reconstruction;87
7.2.1;5.1 Motivation;87
7.2.2;5.2 Chapter Organization;88
7.2.3;5.3 Related Work and Our Contribution;88
7.2.4;5.4 Image Processing;91
7.2.5;5.5 Design of a Score Matrix;92
7.2.5.1;5.5.1 Modeling Spatial Proximity;94
7.2.5.2;5.5.2 Modeling Surface Characteristics;94
7.2.5.3;5.5.3 Score Matrix Elements;95
7.2.6;5.6 Identification of Opposable Fracture Surfaces;96
7.2.6.1;5.6.1 Combinatorial Nature of the Reconstruction Problem;96
7.2.6.2;5.6.2 Maximum Weight Graph Matching for Restricting the Reconstruction Options;97
7.2.7;5.7 Pairwise Registration of the Fracture Surfaces;98
7.2.8;5.8 Shape Monitoring of the Reconstructed Mandible;98
7.2.9;5.9 Experimental Results;100
7.2.10;5.10 Conclusion and Future Work;103
8;Part III: Computer-Aided Fracture Detection;104
8.1;Chapter 6: Fracture Detection Using Bayesian Inference;105
8.1.1;6.1 Motivation;105
8.1.2;6.2 Chapter Organization;106
8.1.3;6.3 Related Work and Our Contribution;106
8.1.4;6.4 Image Processing;108
8.1.5;6.5 Fracture Point Detection in 2D CT Image Slices;109
8.1.5.1;6.5.1 Initial Pool of Fracture Points;110
8.1.5.2;6.5.2 Final Pool of Fracture Points;110
8.1.6;6.6 Stable Fracture Points in a CT Image Sequence;111
8.1.6.1;6.6.1 The Kalman Filter as a Bayesian Inference Process;111
8.1.6.2;6.6.2 Concept of Spatial Consistency;112
8.1.7;6.7 Experimental Results;115
8.1.8;6.8 Conclusion and Future Work;121
8.2;Chapter 7: Fracture Detection in an MRF-Based Hierarchical Bayesian Framework;124
8.2.1;7.1 Motivation;124
8.2.2;7.2 Chapter Organization;125
8.2.3;7.3 Related Work and Our Contribution;126
8.2.4;7.4 Coarse Fracture Localization;127
8.2.4.1;7.4.1 Localization of the Mandible;128
8.2.4.2;7.4.2 Determination of the Fracture-Containing Symmetric Block Pair(s);129
8.2.4.3;7.4.3 Identification of the Fracture-Containing Image Half;130
8.2.5;7.5 Hierarchical Bayesian Restoration Framework;130
8.2.5.1;7.5.1 Statistical Model;131
8.2.5.2;7.5.2 Modeling of the Stochastic Degradation Matrix;133
8.2.6;7.6 Experimental Results;135
8.2.7;7.7 Conclusion and Future Work;147
8.3;Chapter 8: Fracture Detection Using Max-Flow Min-Cut;150
8.3.1;8.1 Motivation;150
8.3.2;8.2 Chapter Organization;150
8.3.3;8.3 Related Work and Our Contribution;151
8.3.4;8.4 Max-Flow Min-Cut in a 2D Flow Network;152
8.3.4.1;8.4.1 Construction of the 2D Flow Network;152
8.3.4.2;8.4.2 Correctness of the 2D Flow Network Model;154
8.3.5;8.5 Max-Flow Min-Cut in 3D;154
8.3.5.1;8.5.1 Construction of the 3D Flow Network;154
8.3.5.2;8.5.2 Correctness of the 3D Flow Network Model;156
8.3.6;8.6 Experimental Results;156
8.3.7;8.7 Conclusion and Future Work;159
9;Part IV: Concluding Remarks;161
9.1;Chapter 9: GUI Design and Research Synopsis;162
9.1.1;9.1 Chapter Organization;162
9.1.2;9.2 Design of the Graphical User Interface;162
9.1.3;9.3 Synopsis;165
9.1.4;9.4 Virtual Reconstructive Surgery-An Interdisciplinary Research Perspective;166
9.1.5;9.5 Future Research Directions;167
10;References;169
11;Index;176



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.