Christmann / Paquin / Weinreb | Science of Synthesis Knowledge Updates 2017 Vol. 2 | E-Book | sack.de
E-Book

E-Book, Englisch, 542 Seiten, PDF

Reihe: Science of Synthesis

Christmann / Paquin / Weinreb Science of Synthesis Knowledge Updates 2017 Vol. 2


1. Auflage 2017
ISBN: 978-3-13-241415-0
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 542 Seiten, PDF

Reihe: Science of Synthesis

ISBN: 978-3-13-241415-0
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in and evaluating significant developments in synthetic methodology. Several annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.

Christmann / Paquin / Weinreb Science of Synthesis Knowledge Updates 2017 Vol. 2 jetzt bestellen!

Zielgruppe


Wissenschaftler

Weitere Infos & Material


1;Science of Synthesis: Knowledge Updates 2017/2;1
2;Title Page;7
3;Imprint;8
4;Preface;9
5;Abstracts;11
6;Overview;19
7;Table of Contents;21
8;17.9.24 Phthalocyanines and Related Compounds;35
8.1;17.9.24.1 Metal-Free Phthalocyanines;36
8.1.1;17.9.24.1.1 Method 1: Synthesis from Phthalonitrile;37
8.1.2;17.9.24.1.2 Method 2: Synthesis from Bicyclo[2.2.2]octadiene-Fused Tetraazaporphyrins (Porphyrazines);39
8.1.3;17.9.24.1.3 Method 3: Synthesis from Phthalimide, Phthalic Anhydride, or Phthalic Acid;40
8.1.4;17.9.24.1.4 Method 4: Demetalation of a Zinc Complex;42
8.2;17.9.24.2 Metal–Phthalocyanine Complexes;42
8.2.1;17.9.24.2.1 Method 1: Synthesis from Phthalonitrile;43
8.2.2;17.9.24.2.2 Method 2: Synthesis from Phthalic Anhydride;47
8.2.3;17.9.24.2.3 Method 3: Synthesis from Phthalic Acid;49
8.2.4;17.9.24.2.4 Method 4: Synthesis from Phthalimide;49
8.3;17.9.24.3 1,8(11),15(18),22(25)-Tetrasubstituted Phthalocyanines and 1:25,11:15-Bridged Phthalocyanines;51
8.3.1;17.9.24.3.1 Method 1: Synthesis from 3-Substituted Phthalonitriles;51
8.3.1.1;17.9.24.3.1.1 Variation 1: Regioselective Preparation of 1,8,15,22-Tetrasubstituted Phthalocyanines from 3-Substituted Phthalonitriles;51
8.3.2;17.9.24.3.2 Method 2: Side-Strapped 1:25,11:15-Tetrasubstituted Phthalocyanines from Bis (isoindolinediimines);52
8.3.3;17.9.24.3.3 Method 3: Postfunctionalization of Phthalocyanines;53
8.3.3.1;17.9.24.3.3.1 Variation 1: Derivatization of Peripheral Substituents;54
8.3.3.2;17.9.24.3.3.2 Variation 2: Chiral 1,8,15,22-Tetrasubstituted Phthalocyanines;56
8.4;17.9.24.4 2,9(10),16(17),23(24)-Tetrasubstituted Phthalocyanines and 2:24,10:16-Bridged Phthalocyanines;61
8.4.1;17.9.24.4.1 Method 1: Synthesis from 4-Substituted Phthalonitriles;62
8.4.1.1;17.9.24.4.1.1 Variation 1: Side-Strapped 2:24,10:16-Bridged Phthalocyanines from 4,4?-Substituted Bis (phthalonitriles);62
8.4.2;17.9.24.4.2 Method 2: Synthesis from 4-Substituted Phthalic Anhydrides;64
8.4.3;17.9.24.4.3 Method 3: Synthesis from 4-5 Substituted Phthalimides;65
8.4.4;17.9.24.4.4 Method 4: Derivatization of Peripheral Substituents;65
8.4.5;17.9.24.4.5 Method 5: Postfunctionalization of Axial Substituents;67
8.5;17.9.24.5 1,3,8,10(9,11),15,17(16,18),22,24(23,25)-Octasubstituted Phthalocyanines;68
8.5.1;17.9.24.5.1 Method 1: Synthesis from 3,5-Disubstituted Phthalic Acids;68
8.5.2;17.9.24.5.2 Method 2: Postfunctionalization of Phthalocyanines;69
8.6;17.9.24.6 1,4,8,11,15,18,22,25-Octasubstituted Phthalocyanines;71
8.6.1;17.9.24.6.1 Method 1: Synthesis from 3,6-Disubstituted Phthalonitriles;71
8.6.2;17.9.24.6.2 Method 2: Derivatization of Peripheral Substituents;73
8.6.3;17.9.24.6.3 Method 3: Postfunctionalization of Axial Substituents;73
8.7;17.9.24.7 2,3,9,10,16,17,23,24-Octasubstituted Phthalocyanines;75
8.7.1;17.9.24.7.1 Method 1: Synthesis from 4,5-Disubstituted Phthalonitriles;75
8.7.1.1;17.9.24.7.1.1 Variation 1: Octasubstituted Phthalocyanines Possessing Two Types of Substituents;77
8.7.2;17.9.24.7.2 Method 2: Synthesis from 4,5-Disubstituted Phthalic Anhydrides;79
8.7.3;17.9.24.7.3 Method 3: Synthesis from 5,6-Disubstituted Isoindoline-1,3-diimines;79
8.7.4;17.9.24.7.4 Method 4: Derivatization of Peripheral Substituents;80
8.7.5;17.9.24.7.5 Method 5: Postfunctionalization of Axial Substituents;82
8.8;17.9.24.8 2:3,9:10,16:17,23:24-Bridged Phthalocyanines;84
8.8.1;17.9.24.8.1 Method 1: Synthesis from 4:5-Bridged Phthalonitriles;84
8.8.2;17.9.24.8.2 Method 2: Synthesis from 5:6-Bridged Isoindoline-1,3-diimines;86
8.8.3;17.9.24.8.3 Method 3: Synthesis from 5:6-Bridged Phthalic Anhydrides;87
8.8.4;17.9.24.8.4 Method 4: Derivatization of Peripheral Substituents;88
8.9;17.9.24.9 Dodecasubstituted Phthalocyanines;90
8.9.1;17.9.24.9.1 Method 1: Synthesis from 3,4,5-Trisubstituted Phthalonitriles;91
8.9.2;17.9.24.9.2 Method 2: Synthesis from 3,4,5-Trisubstituted Phthalic Acids;92
8.9.3;17.9.24.9.3 Method 3: Synthesis from 3,4,6-Trisubstituted Phthalonitriles;92
8.10;17.9.24.10 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecasubstituted Phthalocyanines, 1:2,3:4,8:9,10:11,15:16,17:18,22:23,24:25-Bridged Phthalocyanines, and 1,2:3,4,8,9:10,11,15,16:17,18,22,23:24,25-Bridged Phthalocyanines;93
8.10.1;17.9.24.10.1 Method 1: Synthesis from 3,4,5,6-Tetrasubstituted Phthalonitriles;94
8.10.1.1;17.9.24.10.1.1 Variation 1: Hexadecasubstituted Phthalocyanines Possessing Two Types of Substituents from Symmetrical 3,4,5,6-Tetrasubstituted Phthalonitriles;95
8.10.1.2;17.9.24.10.1.2 Variation 2: Hexadecasubstituted Phthalocyanines Possessing Two Types of Substituents from Unsymmetrical 3,4,5,6-Tetrasubstituted Phthalonitriles;96
8.10.1.3;17.9.24.10.1.3 Variation 3: Hexadecasubstituted Phthalocyanines Possessing Three Types of Substituents;98
8.10.1.4;17.9.24.10.1.4 Variation 4: 1,4,8,11,15,18,22,25-Octasubstituted 2:3,9:10,16:17,23:24-Bridged Phthalocyanines from Phthalonitriles;99
8.10.1.5;17.9.24.10.1.5 Variation 5: 2,3,4,8,9,10,16,17,18,22,23,24-Dodecasubstituted 1:25,11:15-Bridged Phthalocyanines from Bis (phthalonitriles);100
8.10.2;17.9.24.10.2 Method 2: Synthesis from 3,4,5,6-Tetrasubstituted Phthalic Anhydrides;100
8.10.3;17.9.24.10.3 Method 3: Synthesis from 3,4,5,6-Tetrasubstituted Phthalimides;101
8.10.4;17.9.24.10.4 Method 4: Synthesis from 3,4,5,6-Tetrasubstituted Isoindoline-1,3-diimines;102
8.10.5;17.9.24.10.5 Method 5: Derivatization of Peripheral Substituents;103
8.10.6;17.9.24.10.6 Method 6: Postfunctionalization of Axial Substituents;105
8.11;17.9.24.11 5,10,15,20-Tetraazaporphyrins (Porphyrazines);106
8.11.1;17.9.24.11.1 Method 1: Synthesis from 2,3-Disubstituted Maleonitriles;107
8.11.1.1;17.9.24.11.1.1 Variation 1: 2:3,7:8,12:13,17:18-Bridged Tetraazaporphyrins from Cyclic Maleonitriles;108
8.11.2;17.9.24.11.2 Method 2: Synthesis from 3,4-Disubstituted Pyrrole-2,5-diimines;109
8.11.3;17.9.24.11.3 Method 3: Nonuniformly Substituted Tetraazaporphyrins;110
8.11.3.1;17.9.24.11.3.1 Variation 1: A2B2-Type Tetraazaporphyrins from Crossover Macrocyclization Reactions;111
8.11.4;17.9.24.11.4 Method 4: Post-Functionalization of Porphyrazines;113
8.12;17.9.24.12 1,2-Naphthalocyanines;115
8.12.1;17.9.24.12.1 Method 1: Synthesis from Naphthalene-1,2-dicarbonitriles;115
8.13;17.9.24.13 2,3-Naphthalocyanines;116
8.13.1;17.9.24.13.1 Method 1: Synthesis from Naphthalene-2,3-dicarbonitriles;116
8.13.2;17.9.24.13.2 Method 2: Synthesis from Benzoisoindolinediimines;118
8.13.3;17.9.24.13.3 Method 3: Synthesis from Naphthalene Anhydrides;120
8.13.4;17.9.24.13.4 Method 4: Synthesis from Naphthalimides;121
8.13.5;17.9.24.13.5 Method 5: Synthesis from Bicyclo[2.2.2]octene-fused Phthalocyanines;122
8.13.6;17.9.24.13.6 Method 6: Postfunctionalization of Axial Substituents;123
8.14;17.9.24.14 9,10-Phenanthrenocyanines and 2,3-Phenanthrenocyanines;125
8.14.1;17.9.24.14.1 Method 1: 9,10-Phenanthrenocyanines from Phenanthrene-9,10-dicarbonitriles;125
8.14.2;17.9.24.14.2 Method 2: 2,3-Phenanthrenocyanines from Phenanthrene-2,3-dicarboxylic Acid Imides;127
8.15;17.9.24.15 2,3-Triphenylenocyanines;127
8.15.1;17.9.24.15.1 Method 1: Synthesis from Triphenylene-2,3-dicarbonitriles;127
8.16;17.9.24.16 2,3-Anthracenocyanines;129
8.16.1;17.9.24.16.1 Method 1: Synthesis from Anthracene-2,3-dicarbonitriles;129
8.17;17.9.24.17 4,5-Pyrenocyanines;130
8.17.1;17.9.24.17.1 Method 1: Synthesis from Pyrene-4,5-dicarbonitriles;130
8.18;17.9.24.18 4,5-Benzoperylenocyanines;131
8.18.1;17.9.24.18.1 Method 1: Synthesis from Benzo[ghi]perylene-1,2-dicarbonitriles;131
8.19;17.9.24.19 Helicenocyanines and Benzohelicenocyanines;132
8.19.1;17.9.24.19.1 Method 1: Synthesis from [5]Helicene-7,8-dicarbonitriles;133
8.19.2;17.9.24.19.2 Method 2: Synthesis from Benzo[5]helicene-8,9-dicarbonitriles;134
8.20;17.9.24.20 Azulenocyanines;135
8.20.1;17.9.24.20.1 Method 1: Synthesis from Azulene-5,6-dicarbonitriles;135
8.21;17.9.24.21 Tetraazachlorins and Tetraazabacteriochlorins;137
8.21.1;17.9.24.21.1 Method 1: Mixed Condensation of Succinonitrile Derivatives and Another Dinitrile;137
8.21.2;17.9.24.21.2 Method 2: Mixed Condensation of Succinonitrile Derivatives with Phthalic Anhydrides or Phthalimides;141
8.21.3;17.9.24.21.3 Method 3: Cycloaddition Reactions of Tetraazaporphyrins;143
8.22;17.9.24.22 Tetra- and Octaazaphthalocyanines;145
8.22.1;17.9.24.22.1 Method 1: Synthesis from Pyridine-3,4-dicarbonitrile;147
8.22.2;17.9.24.22.2 Method 2: Synthesis from Pyridine-3,4-dicarboxylic Acid;147
8.22.3;17.9.24.22.3 Method 3: Synthesis from 1H-Pyrrolo[3,4-c]pyridine-1,3(2H)-diimine;148
8.22.4;17.9.24.22.4 Method 4: Synthesis from Diazaisoindoline-1,3-diimines;149
8.22.5;17.9.24.22.5 Method 5: Synthesis from Pyrazine-2,3-dicarboxylic Acid;150
8.22.6;17.9.24.22.6 Method 6: Modification of Preformed Azaphthalocyanines;150
8.23;17.9.24.23 Triazacorroles;152
8.23.1;17.9.24.23.1 Method 1: Synthesis from Isoindoline-1,3-diimines;153
8.23.2;17.9.24.23.2 Method 2: Synthesis from Phthalocyanines;153
8.23.3;17.9.24.23.3 Method 3: Synthesis from Tetraazaporphyrins;155
8.23.4;17.9.24.23.4 Method 4: Modification of Preformed Triazacorroles;155
8.23.4.1;17.9.24.23.4.1 Variation 1: Demetalation of Phosphorus(V) Triazacorroles;155
8.23.4.2;17.9.24.23.4.2 Variation 2: Metalation of Free-Base Triazacorroles;156
8.23.4.3;17.9.24.23.4.3 Variation 3: Modification of the Central Metal;157
8.24;17.9.24.24 Subphthalocyanines;159
8.24.1;17.9.24.24.1 Method 1: Synthesis from Phthalonitriles;159
8.24.1.1;17.9.24.24.1.1 Variation 1: 1,8,15(18)-Trisubstituted Subphthalocyanines from 3-Substituted Phthalonitriles;161
8.24.1.2;17.9.24.24.1.2 Variation 2: 2,9,16(17)-Trisubstituted Subphthalocyanines from 4-Substituted Phthalonitriles;162
8.24.1.3;17.9.24.24.1.3 Variation 3: 2,3,9,10,16,17-Hexasubstituted Subphthalocyanines and 2,3-Subnaphthalocyanines from 4,5-Disubstituted Phthalonitriles;163
8.24.1.4;17.9.24.24.1.4 Variation 4: Hexasubstituted Subphthalocyanines and 1,2-Subnaphthalocyanines from 3,4- and 3,5-Disubstituted Phthalonitriles;165
8.24.1.5;17.9.24.24.1.5 Variation 5: 1,4,8,11,15,18-Hexasubstituted Subphthalocyanines from 3,6-Disubstituted Phthalonitriles;166
8.24.1.6;17.9.24.24.1.6 Variation 6: Dodecasubstituted Subphthalocyanines from 3,4,5,6-Tetrasubstituted Phthalonitriles;166
8.24.2;17.9.24.24.2 Method 2: Nonuniformly Substituted Subphthalocyanines by Crossover Cyclotrimerization;168
8.24.3;17.9.24.24.3 Method 3: Postfunctionalization of Subphthalocyanines;171
8.24.3.1;17.9.24.24.3.1 Variation 1: Derivatization of Peripheral Substituents;171
8.24.3.2;17.9.24.24.3.2 Variation 2: Reactions at the B?X Bond;176
8.25;17.9.24.25 Subporphyrazines;179
8.25.1;17.9.24.25.1 Method 1: Synthesis from Maleonitriles;179
8.25.2;17.9.24.25.2 Method 2: Postfunctionalization of Subporphyrazines;180
8.25.2.1;17.9.24.25.2.1 Variation 1: Derivatization of Peripheral Substituents;180
8.25.2.2;17.9.24.25.2.2 Variation 2: Reactions at the B?X Bond;182
8.26;17.9.24.26 Superazaporphyrins;182
8.26.1;17.9.24.26.1 Method 1: Synthesis from Pyrrole-2,5-diimines;183
8.27;17.9.24.27 Nonuniformly Substituted Phthalocyanines;184
8.27.1;17.9.24.27.1 Method 1: Crossover Cyclotetramerizations;184
8.27.1.1;17.9.24.27.1.1 Variation 1: Synthesis of A3B Nonuniformly Substituted Phthalocyanines;186
8.27.1.2;17.9.24.27.1.2 Variation 2: Side-Strapped AABB-Type Phthalocyanines;191
8.27.1.3;17.9.24.27.1.3 Variation 3: Synthesis of ABAB-Type Nonuniformly Substituted Phthalocyanines;192
8.27.2;17.9.24.27.2 Method 2: A3B-Type Phthalocyanines by Ring Expansion of Subphthalocyanines;192
8.27.3;17.9.24.27.3 Method 3: Synthesis of A3B-Type Phthalocyanines Using a Polymer Support;194
8.27.3.1;17.9.24.27.3.1 Variation 1: Synthesis of A3B-Type Phthalocyanines via ROMP–Capture–Release;196
8.27.4;17.9.24.27.4 Method 4: ABAB-Type Phthalocyanines from 1,1,3-Trichloroisoindole Derivatives;198
8.27.5;17.9.24.27.5 Method 5: Synthesis of ABAC-Type Phthalocyanines from Crossover Cyclotetramerization Reactions;199
8.27.6;17.9.24.27.6 Method 6: Postfunctionalization of Phthalocyanines;200
8.28;17.9.24.28 Multinuclear Phthalocyanines;208
8.28.1;17.9.24.28.1 Method 1: Cyclotetramerization Reactions Using Phthalonitriles, Oligo (phthalonitriles), or Derivatives;208
8.28.1.1;17.9.24.28.1.1 Variation 1: Dimeric Phthalocyanines from Bisphthalonitriles;208
8.28.1.2;17.9.24.28.1.2 Variation 2: Trimeric Phthalocyanines from Phthalonitriles;212
8.28.1.3;17.9.24.28.1.3 Variation 3: Dimeric Phthalocyanines from Fused Bis (pyrrolidinediimines);214
8.28.1.4;17.9.24.28.1.4 Variation 4: Oligomeric Phthalocyanines from Phthalonitriles;215
8.28.2;17.9.24.28.2 Method 2: Synthesis by Connecting Preformed Phthalocyanines;217
8.28.2.1;17.9.24.28.2.1 Variation 1: Reaction of Peripheral Substituents;217
8.28.2.2;17.9.24.28.2.2 Variation 2: Axial Coordination;227
9;34.1.1.8 Synthesis of Fluoroalkanes by Substitution of Hydrogen (Update 2017);245
9.1;34.1.1.8.1 Method 1: Reaction with Fluoride Ion Sources;245
9.1.1;34.1.1.8.1.1 Variation 1: Using Metal Fluoride Reagents;245
9.1.2;34.1.1.8.1.2 Variation 2: Using Ammonium Fluoride Salts;246
9.2;34.1.1.8.2 Method 2: Reaction with Selectfluor;249
9.2.1;34.1.1.8.2.1 Variation 1: Using Metal Catalysts;249
9.2.2;34.1.1.8.2.2 Variation 2: Using Organocatalysts;252
9.2.3;34.1.1.8.2.3 Variation 3: Using Light-Mediated Processes;253
9.3;34.1.1.8.3 Method 3: Reaction with Selectfluor II;255
9.4;34.1.1.8.4 Method 4: Reaction with N-Fluorobenzenesulfonimide;257
10;34.1.4.1 Synthesis of Fluoroalkanes by Substitution of a Halogen;261
10.1;34.1.4.1.1 Method 1: Substitution of Primary Halides;261
10.1.1;34.1.4.1.1.1 Variation 1: Using Metal Fluorides;261
10.1.2;34.1.4.1.1.2 Variation 2: Using Hydrogen Fluoride Complexes;264
10.1.3;34.1.4.1.1.3 Variation 3: Using Tetraalkylammonium Fluorides;265
10.1.4;34.1.4.1.1.4 Variation 4: Using Fluorosilicate Derivatives;268
10.2;34.1.4.1.2 Method 2: Substitution of Secondary Halides;268
10.2.1;34.1.4.1.2.1 Variation 1: Using Metal Fluorides;269
10.2.2;34.1.4.1.2.2 Variation 2: Using Hydrogen Fluoride Complexes;272
10.3;34.1.4.1.3 Method 3: Substitution of Tertiary Halides;275
10.3.1;34.1.4.1.3.1 Variation 1: Using Metal Fluorides;275
10.3.2;34.1.4.1.3.2 Variation 2: Using Base–Hydrogen Fluoride Complexes;276
10.3.3;34.1.4.1.3.3 Variation 3: Using Silver(I) Tetrafluoroborate;277
10.3.4;34.1.4.1.3.4 Variation 4: Using Ruthenium Complexes;277
11;34.1.4.3 Synthesis of Fluoroalkanes by Substitution of Oxygen and Sulfur Functionalities;281
11.1;34.1.4.3.1 Method 1: Substitution of Trifluoromethanesulfonates and Imidazolesulfonates;281
11.1.1;34.1.4.3.1.1 Variation 1: Using Difluorosilicate Derivatives;281
11.1.2;34.1.4.3.1.2 Variation 2: Using Tetrabutylammonium Fluoride;282
11.1.3;34.1.4.3.1.3 Variation 3: Using Base–Hydrogen Fluoride Complexes;285
11.1.4;34.1.4.3.1.4 Variation 4: Using Metal Fluoride;286
11.2;34.1.4.3.2 Method 2: Substitution of Cyclic Sulfates;287
11.2.1;34.1.4.3.2.1 Variation 1: Using Ammonium Fluorides;287
11.2.2;34.1.4.3.2.2 Variation 2: Using Tetrabutylammonium Fluoride for the Substitution of Cyclic Sulfamates;289
11.3;34.1.4.3.3 Method 3: Substitution of Carboxylic Esters and Cyclic Carbonates;290
11.4;34.1.4.3.4 Method 4: Substitution of O, S-Dialkyl Dithiocarbonates;291
11.5;34.1.4.3.5 Method 5: Substitution of Primary Sulfonates;292
11.5.1;34.1.4.3.5.1 Variation 1: Using Potassium Fluoride;293
11.5.2;34.1.4.3.5.2 Variation 2: Using an Ionic Liquid and Cesium Fluoride;293
11.5.3;34.1.4.3.5.3 Variation 3: Using Ammonium Fluorides under High Pressure;296
11.5.4;34.1.4.3.5.4 Variation 4: Using Ammonium Fluorides or Hydrogen Difluorides;297
11.5.5;34.1.4.3.5.5 Variation 5: Using Difluorosilicate Derivatives;298
11.6;34.1.4.3.6 Method 6: Substitution of Secondary Sulfonates;299
11.6.1;34.1.4.3.6.1 Variation 1: Using Potassium Fluoride;299
11.6.2;34.1.4.3.6.2 Variation 2: Using Ammonium Fluorides;300
11.6.3;34.1.4.3.6.3 Variation 3: Using Reagents Containing Hydrogen Fluoride;300
11.6.4;34.1.4.3.6.4 Variation 4: Using Difluorosilicate;302
11.6.5;34.1.4.3.6.5 Variation 5: Using Cesium Fluoride and Polymer-Supported Pentaethylene Glycol;303
11.7;34.1.4.3.7 Method 7: Substitution of Sulfides;304
11.7.1;34.1.4.3.7.1 Variation 1: Substitution of Alkyl Sulfides;304
11.7.2;34.1.4.3.7.2 Variation 2: Substitution of Thioglycosides;305
11.8;34.1.4.3.8 Method 8: Substitution of Ethers Using a Hydrofluoric Acid Complex;306
11.9;34.1.4.3.9 Method 9: Substitution of a Carbamimidate Using Hydrofluoric Acid Complex;307
12;34.1.6.4 Synthesis of Fluoroalkanes with Retention of the Functional Group (update 2017);311
12.1;34.1.6.4.1 Method 1: Substitution of ?-Halogen Atoms;311
12.1.1;34.1.6.4.1.1 Variation 1: Dechlorinative Carbon–Carbon Bond Formation at an ?-sp3 Carbon Center;311
12.1.2;34.1.6.4.1.2 Variation 2: Debrominative Carbon–Carbon Bond Formation at an ?-sp3 Carbon Center;312
12.1.3;34.1.6.4.1.3 Variation 3: Deiodinative Carbon–Carbon Bond Formation at an ?-sp3 Carbon Center;319
12.1.4;34.1.6.4.1.4 Variation 4: Debrominative Carbon–Carbon Bond Formation at a ?-sp3 Carbon Center;321
12.2;34.1.6.4.2 Method 2: Substitution of Carboxy or Alkoxycarbonyl Groups;322
12.3;34.1.6.4.3 Method 3: Substitution of Other Groups;324
12.4;34.1.6.4.4 Method 4: Deprotonation;327
12.4.1;34.1.6.4.4.1 Variation 1: Deprotonative Construction of a Carbon–Carbon Single Bond;327
12.4.2;34.1.6.4.4.2 Variation 2: Deprotonative Construction of a Carbon-Carbon Single Bond under an SN2 or SN2? Mechanism;333
12.4.3;34.1.6.4.4.3 Variation 3: Deprotonative Construction of a Carbon–Carbon Single Bond by Conjugate Addition;336
12.4.4;34.1.6.4.4.4 Variation 4: Deprotonative Construction of a Carbon–Carbon Single Bond by Addition to a C=X Bond;341
12.5;34.1.6.4.5 Method 5: Hydrogenation (Reduction);348
12.5.1;34.1.6.4.5.1 Variation 1: Hydrogenation of a Carbon–Carbon Double Bond;348
12.5.2;34.1.6.4.5.2 Variation 2: Reduction of a Carbon–Nitrogen Double Bond;350
12.6;34.1.6.4.6 Method 6: Ring Formation;352
12.6.1;34.1.6.4.6.1 Variation 1: By Cycloaddition;352
12.6.2;34.1.6.4.6.2 Variation 2: By Iodolactonization;353
13;34.2.2 Fluorocyclopropanes;359
13.1;34.2.2.1 Method 1: Carbene and Carbenoid Addition to Fluoroalkenes;360
13.1.1;34.2.2.1.1 Variation 1: Simmons–Smith Reaction of Fluorinated Allylic Alcohols Using Diethylzinc/Diiodomethane;360
13.1.2;34.2.2.1.2 Variation 2: Simmons–Smith Reaction of Fluorinated Silyl Enol Ethers Using Diethylzinc/Diiodomethane;361
13.1.3;34.2.2.1.3 Variation 3: Addition of Diazoacetic Esters to Fluoroalkenes;361
13.1.4;34.2.2.1.4 Variation 4: Enantioselective Addition of Methyl 2-Diazo-2-phenylacetate to Fluoroalkenes;363
13.1.5;34.2.2.1.5 Variation 5: Racemic and Catalytic Enantioselective Addition of Diacceptor Diazo Derivatives to Fluoroalkenes;364
13.1.6;34.2.2.1.6 Variation 6: Intramolecular Cyclopropanation of (Z)-3-Bromo-3-fluoroallyl 2-Cyano-2-diazoacetate;367
13.2;34.2.2.2 Method 2: 1-Fluoro-1-halocyclopropanes via Addition of Fluorohalocarbenes to Alkenes;367
13.2.1;34.2.2.2.1 Variation 1: Phase-Transfer-Catalyzed Formation of Chlorofluorocyclopropanes;367
13.2.2;34.2.2.2.2 Variation 2: Bromofluorocarbene Addition to Alkenes Using Phase-Transfer Catalysis;368
13.3;34.2.2.3 Method 3: Direct Fluorocarbene Addition to Alkenes;370
13.3.1;34.2.2.3.1 Variation 1: Fluorocyclopropanes from Chlorofluoromethyl Phenyl Sulfide and Alkenes;370
13.3.2;34.2.2.3.2 Variation 2: Fluorocyclopropanes from Difluoroiodomethane and Alkenes;372
13.4;34.2.2.4 Method 4: Fluorocyclopropanes via Michael-Initiated Ring-Closure Reaction;374
13.4.1;34.2.2.4.1 Variation 1: Fluorocyclopropanes from ?-Fluorinated Sulfoximides and ?,?-Unsaturated Weinreb Amides;375
13.4.2;34.2.2.4.2 Variation 2: Fluorocyclopropanes from a (1-Fluorovinyl) diphenylsulfonium Salt and Active Methylene Compounds;376
13.4.3;34.2.2.4.3 Variation 3: Fluorocyclopropanes from Michael Acceptors and Ethyl 2,2-Dibromo-2-fluoroacetate;377
13.4.4;34.2.2.4.4 Variation 4: Fluorocyclopropanes from Michael Acceptors and Quaternary Ammonium Salts of Bromo Fluoro Amide Derivatives;382
13.5;34.2.2.5 Method 5: Fluorohydroxylation of Alkylidenecyclopropanes;383
13.6;34.2.2.6 Method 6: Reaction of Chlorocyclopropanes with Fluoride Anion;383
14;34.3.2 (Fluoromethyl) cyclopropanes (Update 2017);387
14.1;34.3.2.1 Method 1: Fluorodehydroxylation of Cyclopropylmethanols with N, N-Diethylaminosulfur Trifluoride or Bis (2-methoxyethyl) aminosulfur Trifluoride (Deoxo-Fluor);387
14.2;34.3.2.2 Method 2: Formation of Cyclopropylmethyl Sulfonates and Displacement by Fluoride;388
14.3;34.3.2.3 Method 3: Rearrangement of Fluoro Epoxides;388
15;34.4.2 Fluorocyclobutanes (Update 2017);391
15.1;34.4.2.1 Method 1: Fluorodehydroxylation of Cyclobutanols;391
15.1.1;34.4.2.1.1 Variation 1: Fluorodehydroxylation Using Bis (2-methoxyethyl) aminosulfur Trifluoride (Deoxo-Fluor);392
15.1.2;34.4.2.1.2 Variation 2: Fluorodehydroxylation Using Tetramethylfluoroformamidinium Hexafluorophosphate (TFFH);394
15.2;34.4.2.2 Method 2: Reactions of Cyclobutanes Bearing a Leaving Group with Fluorinating Agents;395
15.2.1;34.4.2.2.1 Variation 1: Reaction of a Bridged Halocyclobutane with Silver(I) Fluoride;395
15.2.2;34.4.2.2.2 Variation 2: Reactions of Cyclobutane Trifluoromethanesulfonates with Tetrabutylammonium Fluoride;395
15.3;34.4.2.3 Method 3: Ring-Expansion Reactions of Cyclopropyl Carbinols with Nucleophilic Fluoride;396
15.3.1;34.4.2.3.1 Variation 1: N, N-Diethylaminosulfur Trifluoride Promoted Ring Expansion of a Methylenecyclopropyl Carbinol;396
15.3.2;34.4.2.3.2 Variation 2: Nonafluorobutanesulfonyl Fluoride Promoted Ring Expansion of Methylenecyclopropyl Carbinols;396
15.4;34.4.2.4 Method 4: Addition of Halogen Fluorides to Methylenecyclobutane and Cyclobutenes;397
15.4.1;34.4.2.4.1 Variation 1: Addition of Bromine Monofluoride to Methylenecyclobutane;397
15.4.2;34.4.2.4.2 Variation 2: Rearrangement of 2-(Benzyloxycarbonyl)-2-azabicyclo[2.2.0]hex-5-ene in the Presence of Bromine Monofluoride;398
15.4.3;34.4.2.4.3 Variation 3: Addition of Iodine Monofluoride to N-Protected 2-Azabicyclo[2.2.0]hexenes;398
15.5;34.4.2.5 Method 5: Synthesis of Fluorocyclobutanes by [2 + 2] Photocycloaddition Reactions;399
15.5.1;34.4.2.5.1 Variation 1: Intramolecular [2 + 2] Photocycloaddition Reactions;400
16;34.7.4 Allylic Fluorides (Update 2017);403
16.1;34.7.4.1 Method 1: Allylic Substitution of Oxygen-Based Leaving Groups;403
16.1.1;34.7.4.1.1 Variation 1: From Allylic Alcohols;403
16.1.2;34.7.4.1.2 Variation 2: From Allylic Carbonates;404
16.1.3;34.7.4.1.3 Variation 3: From Allylic Esters;406
16.1.4;34.7.4.1.4 Variation 4: From Allylic Imidates;407
16.2;34.7.4.2 Method 2: Allylic Substitution of Sulfur-Based Leaving Groups;409
16.3;34.7.4.3 Method 3: Allylic Substitution of Silicon-Based Leaving Groups;410
16.4;34.7.4.4 Method 4: Allylic Substitution of Halogen Leaving Groups;413
16.5;34.7.4.5 Method 5: Ring Opening/Fluorination;416
16.5.1;34.7.4.5.1 Variation 1: From Vinyl Epoxides;416
16.5.2;34.7.4.5.2 Variation 2: From Oxabicyclic Alkenes;417
16.6;34.7.4.6 Method 6: Fluorination of Allenes;418
16.6.1;34.7.4.6.1 Variation 1: Carbofluorination;418
16.6.2;34.7.4.6.2 Variation 2: Iodofluorination;420
16.7;34.7.4.7 Method 7: Fluorination of Alkenes;421
16.7.1;34.7.4.7.1 Variation 1: Electrophilic Fluorination with Directing Groups;421
16.7.2;34.7.4.7.2 Variation 2: One-Pot Fluoroselenation/Elimination;424
16.8;34.7.4.8 Method 8: Fluorination of Vinylic Diazoacetates;424
16.9;34.7.4.9 Method 9: One-Pot ?-Fluorination/Wittig-Type Reaction;426
16.10;34.7.4.10 Method 10: Fluorination of Allylic C?H Bonds;427
17;34.9.3 ?-Fluoro Alcohols;431
17.1;34.9.3.1 Method 1: Fluorination of Allylic Alcohols;431
17.2;34.9.3.2 Method 2: Aldol Reaction of ?-Fluoro Carbonyl Compounds;433
17.2.1;34.9.3.2.1 Variation 1: Enzyme-Catalyzed Aldol Reaction;434
17.2.2;34.9.3.2.2 Variation 2: Decarboxylative Aldol Reaction;435
17.2.3;34.9.3.2.3 Variation 3: Detrifluoroacetylative Aldol Reaction;437
17.3;34.9.3.3 Method 3: Synthesis via ?-Fluorination of Carbonyl Compounds;439
17.3.1;34.9.3.1.1 Variation 1: Via Fluorination Using Enamine Catalysis;439
17.3.2;34.9.3.1.2 Variation 2: Via Fluorination of Active Methine Compounds;442
18;34.10.5 ?-Fluoroamines (Update 2017);447
18.1;34.10.5.1 Method 1: Reduction of ?-Fluoro Azides;448
18.2;34.10.5.2 Method 2: N-Substitution of a Leaving Group ? to Fluorine;449
18.3;34.10.5.3 Method 3: Ring Opening of Aziridines with Hydrogen Fluoride Equivalents;450
18.3.1;34.10.5.3.1 Variation 1: Ring Opening of Aziridines with the Fluoride Ion;452
18.4;34.10.5.4 Method 4: Ring Opening of Cyclic Sulfamates with the Fluoride Ion;452
18.5;34.10.5.5 Method 5: C?H Activation and Fluorination of Alkylamines;453
18.5.1;34.10.5.5.1 Variation 1: Photocatalytic C?H Activation and Fluorination;454
18.6;34.10.5.6 Method 6: Electrophilic Fluorination of Enamines and Related Substrates;455
18.7;34.10.5.7 Method 7: Fluoroalkylation of Imines;457
18.8;34.10.5.8 Method 8: Electrophilic Fluorination of ?-Amino Carbonyl Compounds;460
18.9;34.10.5.9 Method 9: Reductive Amination of ?-Fluoro Carbonyl Compounds;461
18.9.1;34.10.5.9.1 Variation 1: Nucleophilic Addition to ?-Fluorinated Imine Derivatives;462
18.10;34.10.5.10 Method 10: Fluorination of Allylic Amines;463
18.10.1;34.10.5.10.1 Variation 1: Electrophilic Fluorination of Allylic Amines;464
18.11;34.10.5.11 Method 11: Addition of an N-Nucleophile to a Fluoroalkene;466
18.12;34.10.5.12 Method 12: Aminofluorination of Alkenes;467
18.12.1;34.10.5.12.1 Variation 1: Aminofluorination of Unactivated Alkenes;469
18.13;34.10.5.13 Method 13: Decarboxylative Fluorination;472
18.14;34.10.5.14 Method 14: Reduction of an Unsaturated ?-Fluoroamine Precursor;473
18.15;34.10.5.15 Method 15: 1,3-Dipolar Cycloadditions;474
18.16;34.10.5.16 Method 16: Fluorocyclopropanation of an Unsaturated Amine;474
19;40.1.6.2 Azetidines (Update 2017);479
19.1;40.1.6.2.1 Ring-Closure Reactions;479
19.1.1;40.1.6.2.1.1 Method 1: Ring Closure of Amines and 1,3-Functionalized Hydrocarbons;480
19.1.1.1;40.1.6.2.1.1.1 Variation 1: From Amines and 1,3-Dihalo Compounds;480
19.1.1.2;40.1.6.2.1.1.2 Variation 2: From Amines and 1,3-Diol Derivatives;481
19.1.2;40.1.6.2.1.2 Method 2: Organocatalyzed [2 + 2] Cycloaddition of Imines and Alkenes;482
19.1.3;40.1.6.2.1.3 Method 3: Ring Closure of Acyclic Amines;483
19.1.3.1;40.1.6.2.1.3.1 Variation 1: Ring Closure of ?-Haloamines;483
19.1.3.2;40.1.6.2.1.3.2 Variation 2: Ring Closure of ?-Hydroxy Amines and Derivatives;484
19.1.3.3;40.1.6.2.1.3.3 Variation 3: Ring Closure of ?-Alkenylamines;488
19.1.3.4;40.1.6.2.1.3.4 Variation 4: Ring Closure of ?,?-Epoxyamines;489
19.1.3.5;40.1.6.2.1.3.5 Variation 5: Ring Closure of ?,?-Epoxyamines;490
19.1.3.6;40.1.6.2.1.3.6 Variation 6: Ring Closure of N-(Aziridin-2-ylmethyl) amines;490
19.1.3.7;40.1.6.2.1.3.7 Variation 7: Ring Closure of ?-Amino Sulfonium Ions;491
19.1.3.8;40.1.6.2.1.3.8 Variation 8: Ring Closure of ?-Amino Selenones;492
19.1.3.9;40.1.6.2.1.3.9 Variation 9: Ring Closure of ?-Alkenylamines;493
19.1.4;40.1.6.2.1.4 Method 4: Ring Closure of Acyclic Imines;494
19.1.5;40.1.6.2.1.5 Method 5: Ring Closure of Stabilized Carbanions (C?C Bond Formation);495
19.1.5.1;40.1.6.2.1.5.1 Variation 1: Intramolecular Alkylation of ?-Amino Halides;495
19.1.5.2;40.1.6.2.1.5.2 Variation 2: Intramolecular Alkylation of 2-(Aminomethyl) oxiranes;497
19.2;40.1.6.2.2 Reduction of Four-Membered Ring Compounds;498
19.2.1;40.1.6.2.2.1 Method 1: Reduction of Azetidin-2-ones (?-Lactams);498
19.2.2;40.1.6.2.2.2 Method 2: Reduction of Azetes;501
19.3;40.1.6.2.3 Ring Transformation Reactions;502
19.3.1;40.1.6.2.3.1 Method 1: Ring Expansion of Three-Membered Rings;502
19.3.2;40.1.6.2.3.2 Method 2: Ring Contraction of Five-Membered Rings;504
19.3.3;40.1.6.2.3.3 Method 3: Substitution at Ring Carbons;505
19.3.4;40.1.6.2.3.4 Method 4: Substitution at the Ring Nitrogen;506
19.3.5;40.1.6.2.3.5 Method 5: Resolution of Racemic Azetidines;507
19.4;40.1.6.2.4 Miscellaneous Reactions;508
20;Author Index;513
21;Abbreviations;541


Abstracts


17.9.24 Phthalocyanines and Related Compounds


This review updates the original chapter (Section 17.9) on phthalocyanines and various ring-fused, ring-contracted, and ring-expanded analogues. It adds some recently published methods, examples, and variations on the synthesis of unsubstituted phthalocyanines and metal phthalocyanines, as well as identically and nonidentically substituted phthalocyanine derivatives. Besides peripheral substitution, axial functionalization is also discussed, but attention is focused only on those methods that represent appreciable progress for a particular type of metal coordination and axial functionalization, provide phthalocyanines with specific features such as chirality, or allow the functionalization of phthalocyanines with entities that are difficult to introduce at the peripheral sites. This account also includes sections on new types of phthalocyanine derivatives and analogues that were not covered in the original chapter, as well as the progress made in the synthesis of some of these families in the decade since 2003.

Keywords: phthalocyanines • phthalocyanine–metal complexes • porphyrazines • tetraazaporphyrins • naphthalocyanines • phenanthrenocyanines • triphenylenocyanines • anthracenocyanines • pyrenocyanines • benzoperylenocyanines • helicenocyanines • azulenocyanines • tetraazachlorins • tetraazabacteriochlorins • azaphthalocyanines • triazacorroles • subphthalocyanines • subporphyrazines • superazaporphyrins • pyrenocyanines • phthalonitriles • phthalic anhydrides • phthalic acids • phthalimides • isoindolinediimines • condensation reactions • substituent modification • ligand substitution

34.1.1.8 Synthesis of Fluoroalkanes by Substitution of Hydrogen


This chapter is an update to the earlier contribution (Section 34.1.1) describing methods for the synthesis of fluoroalkanes by substitution of hydrogen. The increasing importance of fluorine-containing molecules in the health, pharmaceutical, and agrochemical sectors has resulted in the rapid development of more-selective, morecontrolled, and safer methods for the insertion of a fluorine atom into structurally diverse molecules. Herein, the most synthetically useful methods reported from 2006 until mid-2016 to achieve such transformations are described.

Keywords: fluorination • hydrogen substitution • alkanes • cycloalkanes • fluorine compounds • fluorine transfer • Selectfluor • photocatalysis • organometallic reagents

34.1.4.1 Synthesis of Fluoroalkanes by Substitution of a Halogen


This chapter is a revision of the earlier contribution describing methods for the synthesis of fluoroalkanes by substitution of a halogen atom. It includes additional methods published up until 2016. Newer approaches involve the use of fluoride complex reagents and the use of solvent effects to avoid competitive elimination reactions.

Keywords: fluoroalkanes • nucleophilic substitution • fluorides • halides • alkanes • cycloalkanes • nucleosides • amines • steroids • ammonium compounds • copper complexes

34.1.4.3 Synthesis of Fluoroalkanes by Substitution of Oxygen and Sulfur Functionalities


This chapter is a revision of the earlier contribution describing methods for the synthesis of fluoroalkanes by substitution of oxygen and sulfur functionalities. It now includes the literature published up until 2016. The additional material focuses on new reagents and their applications. For example, the effect of an ionic liquid on the rate of the displacement of sulfonates by cesium fluoride, and expeditious synthesis of nucleoside derivatives are described.

Keywords: fluoroalkanes • nucleophilic substitution • fluorides • sulfonates • alkanes • cycloalkanes • pyrans • nucleosides • carbohydrates • steroids • sulfur compounds • copper complexes

34.1.6.4 Synthesis of Fluoroalkanes with Retention of the Functional Group


This chapter is an update to the earlier contribution (Section 34.1.6) describing methods for the synthesis of monofluorinated compounds with a C(sp3)-F bond by way of a wide variety of transformations of molecules already bearing the key C-F bond. The focus is on methods published in the period 2005–2015.

Keywords: alkylation • crossed aldol reactions • conjugate addition • SN2' reactions • hydrogenation • reduction • cycloadditions • iodolactonization

34.2.2 Fluorocyclopropanes


This chapter is an update to the earlier contribution (Section 34.2) describing methods for the synthesis of fluorocyclopropanes. The most important breakthrough described in this update is the development of asymmetric syntheses of fluorocyclopropanes based on various approaches, such as the use of chiral fluorinated scaffolds or the development of catalytic enantioselective sequences. This review focuses on the contributions published between 2005 and 2016.

Keywords: fluorocyclopropanes • cyclopropanes • fluorine compounds • conjugate addition • carbenoids • diazo compounds • asymmetric catalysis • alkenes

34.3.2 (Fluoromethyl) cyclopropanes


This chapter is an update to the earlier contribution (Section 34.3) describing methods for the synthesis of (fluoromethyl) cyclopropanes. In this review, new methods, published since 2006, by means of direct or two-step fluorodehydroxylation and by rearrangement of fluoroepoxides are described.

Keywords: (fluoromethyl) cyclopropanes • cyclopropanes • fluorine compounds • nucleophilic fluorination • carbenoids • rearrangement

34.4.2 Fluorocyclobutanes


This chapter is an update to the earlier contribution (Section 34.4) describing methods for the synthesis of fluorocyclobutanes. In this review, progress made in the field since 2006 is reported. The use of cycloaddition reactions as well as rearrangement reactions to access the fluorocyclobutane motif are significant advances in this area.

Keywords: fluorocyclobutanes • cyclobutanes • fluorine compounds • nucleophilic fluorination • [2 + 2] cycloaddition • rearrangement

34.7.4 Allylic Fluorides


This chapter is an update to the earlier contribution (Section 34.7) regarding the synthesis of allylic monofluorides. Herein, literature from 2005–2015 is discussed. Advancements during this time period include the employment of milder fluorinating reagents, methods that favor alkene migration or retention, tactics for catalytic and asymmetric reactions, and the introduction of a creative array of functional-group interconversions.

Keywords: fluorination • halogenation • allylic fluorides • carbon-halogen bonds • allylic substitution • electrophilic fluorination • nucleophilic fluorination • asymmetric fluorination • regioselectivity

34.9.3 ß-Fluoro Alcohols


This chapter is an update to the earlier contribution (Section 34.9) describing methods for the synthesis of ß-fluoro alcohols. It focuses on enantioselective synthetic approaches, and includes methods based on the a-fluorination of carbonyl compounds and subsequent reduction.

Keywords: ß-fluoro alcohols • fluorine compounds • asymmetric fluorination • decarboxylation • decarbonylation • aldol reaction • reduction • enantioselectivity • Lewis acid catalysts • chiral amine catalysts

34.10.5 ß-Fluoroamines


This chapter is an update to the earlier contribution (Section 34.10) describing methods for the synthesis of ß-fluoroamines. This topic has continued to attract signficant attention from the synthetic community, largely due to the medicinal importance of this class of compounds. A wide variety of new methods have been developed, and this review focuses on examples that were published between 2005 and 2015.

Keywords: aminofluorination • carbon-fluorine bonds • electrophilic fluorination • nucleophilic fluorination • radical fluorination • stereoselective reactions

40.1.6.2...




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.