Buch, Englisch, 800 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1385 g
Buch, Englisch, 800 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1385 g
Reihe: Genetic and Evolutionary Computation
ISBN: 978-0-387-33254-3
Verlag: Springer US
Solving multi-objective problems is an evolving effort, and computer science and other related disciplines have given rise to many powerful deterministic and stochastic techniques for addressing these large-dimensional optimization problems. Evolutionary algorithms are one such generic stochastic approach that has proven to be successful and widely applicable in solving both single-objective and multi-objective problems.
This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems, including test suites with associated performance based on a variety of appropriate metrics, as well as serial and parallel algorithm implementations.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
Weitere Infos & Material
Basic Concepts.- MOP Evolutionary Algorithm Approaches.- MOEA Local Search and Coevolution.- MOEA Test Suites.- MOEA Testing and Analysis.- MOEA Theory and Issues.- Applications.- MOEA Parallelization.- Multi-Criteria Decision Making.- Alternative Metaheuristics.