Contou-Carrere | Buildings and Schubert Schemes | E-Book | sack.de
E-Book

E-Book, Englisch, 462 Seiten

Contou-Carrere Buildings and Schubert Schemes


1. Auflage 2017
ISBN: 978-1-315-35019-6
Verlag: Taylor & Francis
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 462 Seiten

ISBN: 978-1-315-35019-6
Verlag: Taylor & Francis
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The first part of this book introduces the Schubert Cells and varieties of the general linear group Gl (k^(r+1)) over a field k according to Ehresmann geometric way. Smooth resolutions for these varieties are constructed in terms of Flag Configurations in k^(r+1) given by linear graphs called Minimal Galleries. In the second part, Schubert Schemes, the Universal Schubert Scheme and their Canonical Smooth Resolution, in terms of the incidence relation in a Tits relative building are constructed for a Reductive Group Scheme as in Grothendieck's SGAIII. This is a topic where algebra and algebraic geometry, combinatorics, and group theory interact in unusual and deep ways.

Contou-Carrere Buildings and Schubert Schemes jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Grassmannians and Flag Varieties. Schubert Cell Decomposition of Grassmannians and Flag Varieties. Resolution of Singularities of a Schubert Variety. The Singular Locus of a Schubert Variety. The Flag Complex. Configurations and Galleries Varieties. Configurations Varieties as Galleries Varieties. The Coxeter Complex. Minimal Generalized Galleries in a Coxeter Complex. Minimal Generalized Galleries in a Reductive Group Building. Parabolic Subgroups in a Reductive Group Scheme. Associated Schemes to the Relative Building. Incidence Type Schemes of the Relative Building. Smooth Resolutions of Schubert Schemes. Contracted Products and Galleries Configurations Schemes. Functoriality of Schubert Schemes Smooth Resolutions and Base Changes. About the Coxeter Complex. Generators and Relations and the Building of a Reductive Group.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.