Cossec / Liedtke / Dolgachev | Enriques Surfaces I | Buch | 978-981-961213-0 | sack.de

Buch, Englisch, 681 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1207 g

Cossec / Liedtke / Dolgachev

Enriques Surfaces I


2. Auflage 2025
ISBN: 978-981-961213-0
Verlag: Springer Nature Singapore

Buch, Englisch, 681 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1207 g

ISBN: 978-981-961213-0
Verlag: Springer Nature Singapore


This book, consisting of two volumes, gives a contemporary account of the study of the class of projective algebraic surfaces known as Enriques surfaces. These surfaces were discovered more than 125 years by F. Enriques in an attempt to extend the characterization of rational algebraic curves to the case of algebraic surfaces. The novel feature of the present exposition is that no assumption on the characteristic of the ground field is assumed. 


This requirement calls for exploring the geometry of such surfaces by purely geometric and arithmetic methods that do not rely on transcendental methods such as the theory of periods of algebraic surfaces of type 3, which are close relatives of Enriques surfaces. 

Some of the methods use many technical tools from algebraic geometry that are discussed in Volume 1 and may be a useful source of references for the study of algebraic surfaces over fields of positive characteristic. Volume 1 also contains a detailed exposition of the theory of elliptic surfaces over fields of arbitrary characteristic.

The first volume is an essential and greatly extended revision of , published in 1989 by Birkhäuser and co-authored by F. Cossec and I. Dolgachev. Included is a new chapter devoted to the theory of moduli of Enriques surfaces. 

The two volumes together contain many examples and an extensive bibliography made up of more than 700 items.

Cossec / Liedtke / Dolgachev Enriques Surfaces I jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


0 Preliminaries.- 1 Enriques surfaces: generalities.- 2 Linear Systems on Enriques Surfaces.- 3 Projective Models of Enriques Surfaces.- 4 Genus One Fibrations.- 5 Moduli Spaces.- Appendix A: Automorphic Forms and Moduli Spaces by S. Kondo.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.