Cox / Little / OSHEA | Ideals, Varieties, and Algorithms | E-Book | sack.de
E-Book

E-Book, Englisch, 538 Seiten, eBook

Reihe: Undergraduate Texts in Mathematics

Cox / Little / OSHEA Ideals, Varieties, and Algorithms

An Introduction to Computational Algebraic Geometry and Commutative Algebra
2. Auflage 1997
ISBN: 978-1-4757-2693-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

An Introduction to Computational Algebraic Geometry and Commutative Algebra

E-Book, Englisch, 538 Seiten, eBook

Reihe: Undergraduate Texts in Mathematics

ISBN: 978-1-4757-2693-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Algebraic Geometry is the study of systems of polynomial equations in one or more variables, asking such questions as: Does the system have finitely many solutions, and if so how can one find them? And if there are infinitely many solutions, how can they be described and manipulated? The solutions of a system of polynomial equations form a geometric object called a variety; the corresponding algebraic object is an ideal. There is a close relationship between ideals and varieties which reveals the intimate link between algebra and geometry. Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. The algorithms to answer questions such as those posed above are an important part of algebraic geometry. This book bases its discussion of algorithms on a generalization of the division algorithm for polynomials in one variable that was only discovered in the 1960's. Although the algorithmic roots of algebraic geometry are old, the computational aspects were neglected earlier in this century. This has changed in recent years, and new algorithms, coupled with the power of fast computers, have let to some interesting applications, for example in robotics and in geometric theorem proving. In preparing a new edition of Ideals, Varieties andAlgorithms the authors present an improved proof of the Buchberger Criterion as well as a proof of Bezout's Theorem. Appendix C contains a new section on Axiom and an update about Maple , Mathematica and REDUCE.
Cox / Little / OSHEA Ideals, Varieties, and Algorithms jetzt bestellen!

Zielgruppe


Lower undergraduate

Weitere Infos & Material


1. Geometry, Algebra, and Algorithms.- 2. Groebner Bases.- 3. Elimination Theory.- 4. The Algebra-Geometry Dictionary.- 5. Polynomial and Rational Functions on a Variety.- 6. Robotics and Automatic Geometric Theorem Proving.- 7. Invariant Theory of Finite Groups.- 8. Projective Algebraic Geometry.- 9. The Dimension of a Variety.- Appendix A. Some Concepts from Algebra.- §1 Fields and Rings.- §2. Groups.- §3. Determinants.- Appendix B. Pseudocode.- §1. Inputs, Outputs, Variables, and Constants.- §2. Assignment Statements.- §3. Looping Structures.- §4. Branching Structures.- Appendix C. Computer Algebra Systems.- §1. AXIOM.- §2. Maple.- §3. Mathematica.- §4. REDUCE.- §5. Other Systems.- Appendix D. Independent Projects.- §1. General Comments.- §2. Suggested Projects.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.