Cremers / Lähner / Moeller | Pattern Recognition | E-Book | sack.de
E-Book

E-Book, Englisch, 365 Seiten

Reihe: Lecture Notes in Computer Science

Cremers / Lähner / Moeller Pattern Recognition

46th DAGM German Conference, DAGM GCPR 2024, Munich, Germany, September 10–13, 2024, Proceedings, Part I
Erscheinungsjahr 2025
ISBN: 978-3-031-85181-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

46th DAGM German Conference, DAGM GCPR 2024, Munich, Germany, September 10–13, 2024, Proceedings, Part I

E-Book, Englisch, 365 Seiten

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-85181-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This 2-volume set LNCS 15297-15298 constitutes the refereed proceedings of the 46th Annual Conference of the German Association for Pattern Recognition, DAGM-GCPR 2024, held in Munich, Germany, during September 10-13, 2024.
The 44 full papers included in these proceedings were carefully reviewed and selected from 81 submissions. They are organized in these topical sections:
Part I: Clustering and Segmentation; Learning Techniques; Medical and Biological Applications; Uncertainty and Explainability.
Part II: Modelling of Faces and Shapes; Image Generation and Reconstruction; 3D Analysis and Sythesis; Video Analysis; Photogrammetry and Remote Sensing.

Cremers / Lähner / Moeller Pattern Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Clustering and Segmentation.

.- PARMESAN: Parameter-Free Memory Search and Transduction for Dense Prediction Tasks.

.- A State-of-the-Art Cutting Plane Algorithm for Clique Partitioning.

.- Self-Supervised Semantic Segmentation from Audio-Visual Data.

.- BTSeg: Barlow Twins Regularization for Domain Adaptation in Semantic Segmentation.

.- Learning Techniques.

.- FullCert: Deterministic End-to-End Certification for Training and Inference of Neural Networks.

.- Self-Masking Networks for Unsupervised Adaptation.

.- A Theoretical Formulation on the Use of Multiple Positive Views in Contrastive Learning

.- Decoupling of neural network calibration measures.

.- Examining Common Paradigms in Multi-Task Learning.

.- DIAGen: Semantically Diverse Image Augmentation with Generative Models for Few-Shot Learning.

.- Efficient and Discriminative Image Feature Extraction for Universal Image Retrieval ..

.- Anomaly Detection with Conditioned Denoising Diffusion Models.

.- Medical and Biological Applications.

.- SurgeoNet: Realtime 3D Pose Estimation of Articulated Surgical Instruments from Stereo Images using a Synthetically-trained Network.

.- Foundation Models Permit Retinal Layer Segmentation Across OCT Devices.

.- Correlation Clustering of Organoid Images.

.- Animal Identification with Independent Foreground and Background Modeling.

.- Robust Tumor Segmentation with Hyperspectral Imaging and Graph Neural Networks.

.- Bigger Isn’t Always Better: Towards a General Prior for Medical Image Reconstruction.

.- Uncertainty and Explainability.

.- Latent Diffusion Counterfactual Explanations.

.- Enhancing Surface Neural Implicits with Curvature-Guided Sampling and Uncertainty-Augmented Representations.

.- Uncertainty Voting Ensemble for Imbalanced Deep Regression.

.- Analytical Uncertainty-Based Loss Weighting in Multi-Task Learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.