Cvetkovski | Inequalities | E-Book | www.sack.de
E-Book

E-Book, Englisch, 444 Seiten, eBook

Cvetkovski Inequalities

Theorems, Techniques and Selected Problems
1. Auflage 2012
ISBN: 978-3-642-23792-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Theorems, Techniques and Selected Problems

E-Book, Englisch, 444 Seiten, eBook

ISBN: 978-3-642-23792-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This work is about inequalities which play an important role in mathematical Olympiads. It contains 175 solved problems in the form of exercises and, in addition, 310 solved problems. The book also covers the theoretical background of the most important theorems and techniques required for solving inequalities. It is written for all middle and high-school students, as well as for graduate and undergraduate students. School teachers and trainers for mathematical competitions will also gain benefit from this book.
Cvetkovski Inequalities jetzt bestellen!

Zielgruppe


Popular/general


Autoren/Hrsg.


Weitere Infos & Material


"Basic (elementary) inequalities and their application.- Inequalities between means, (with two and three variables).- Geometric (triangle) inequalities.- Bernoulli’s inequality, the Cauchy–Schwarz inequality, Chebishev’s inequality, Surányi’s inequality.- Inequalities between means (general case).- Points of incidence in applications of the AM–GM inequality.- The rearrangement inequality.- Convexity, Jensen’s inequality.- Trigonometric substitutions and their application for proving algebraic inequalities.- The most usual forms of trigonometric substitutions.- Characteristic examples, using trigonometric substitutions.- Hölder’s inequality, Minkowski’s inequality and their generalizations.- Generalizations of the Cauchy–Schwarz inequality, Chebishev’s inequality and the mean inequalities.- Newton’s inequality, Maclaurin’s inequality.- Schur’s inequality, Muirhead’s inequality.- Two theorems from differential calculus, and their applications for proving inequalities.- One method of proving symmetric inequalities with three variables.- Method for proving symmetric inequalities with three variables defined on set of real numbers.- Abstract concreteness method (ABC method).- Sum of Squares (S.O.S - method).- Strong mixing variables method (S.M.V Theorem).- Lagrange multipliers method.


Dipl. Math. Zdravko Cvetkovski, European University-Skopje, R. Macedonia, Informatics Department.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.