Damelin | Near Extensions and Alignment of Data in R(superscript)N | Buch | 978-1-394-19677-7 | sack.de

Buch, Englisch, 192 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 431 g

Damelin

Near Extensions and Alignment of Data in R(superscript)N

Whitney Extensions of Near Isometries, Shortest Paths, Equidistribution, Clustering and Non-Rigid Alignment of Data in Euclidean Space
1. Auflage 2023
ISBN: 978-1-394-19677-7
Verlag: Wiley

Whitney Extensions of Near Isometries, Shortest Paths, Equidistribution, Clustering and Non-Rigid Alignment of Data in Euclidean Space

Buch, Englisch, 192 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 431 g

ISBN: 978-1-394-19677-7
Verlag: Wiley


Near Extensions and Alignment of Data in Rn

Comprehensive resource illustrating the mathematical richness of Whitney Extension Problems, enabling readers to develop new insights, tools, and mathematical techniques

Near Extensions and Alignment of Data in Rn demonstrates a range of hitherto unknown connections between current research problems in engineering, mathematics, and data science, exploring the mathematical richness of near Whitney Extension Problems, and presenting a new nexus of applied, pure and computational harmonic analysis, approximation theory, data science, and real algebraic geometry. For example, the book uncovers connections between near Whitney Extension Problems and the problem of alignment of data in Euclidean space, an area of considerable interest in computer vision.

Written by a highly qualified author, Near Extensions and Alignment of Data in Rn includes information on:

- Areas of mathematics and statistics, such as harmonic analysis, functional analysis, and approximation theory, that have driven significant advances in the field
- Development of algorithms to enable the processing and analysis of huge amounts of data and data sets
- Why and how the mathematical underpinning of many current data science tools needs to be better developed to be useful
- New insights, potential tools, and mathematical techniques to solve problems in Whitney extensions, signal processing, shortest paths, clustering, computer vision, optimal transport, manifold learning, minimal energy, and equidistribution

Providing comprehensive coverage of several subjects, Near Extensions and Alignment of Data in Rn is an essential resource for mathematicians, applied mathematicians, and engineers working on problems related to data science, signal processing, computer vision, manifold learning, and optimal transport.

Damelin Near Extensions and Alignment of Data in R(superscript)N jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface xiii

Overview xvii

Structure xix

1 Variants 1–2 1

1.1 The Whitney Extension Problem 1

1.2 Variants (1–2) 1

1.3 Variant 2 2

1.4 Visual Object Recognition and an Equivalence Problem in Rd 3

1.5 Procrustes: The Rigid Alignment Problem 4

1.6 Non-rigid Alignment 6

2 Building e-distortions: Slow Twists, Slides 9

2.1 c-distorted Diffeomorphisms 9

2.2 Slow Twists 10

2.3 Slides 11

2.4 Slow Twists: Action 11

2.5 Fast Twists 13

2.6 Iterated Slow Twists 15

2.7 Slides: Action 15

2.8 Slides at Different Distances 18

2.9 3D Motions 20

2.10 3D Slides 21

2.11 Slow Twists and Slides: Theorem 2.1 23

2.12 Theorem 2.2 23

3 Counterexample to Theorem 2.2 (part (1)) for card (E)> d 25

3.1 Theorem 2.2 (part (1)), Counterexample: k > d 25

3.2 Removing the Barrier k > d in Theorem 2.2 (part (1)) 27

4 Manifold Learning, Near-isometric Embeddings, Compressed Sensing, Johnson–Lindenstrauss and Some Applications Related to the near Whitney extension problem 29

4.1 Manifold and Deep Learning Via c-distorted Diffeomorphisms 29

4.2 Near Isometric Embeddings, Compressive Sensing, Johnson–Lindenstrauss and Applications Related to c-distorted Diffeomorphisms 30

4.3 Restricted Isometry 31

5 Clusters and Partitions 33

5.1 Clusters and Partitions 33

5.2 Similarity Kernels and Group Invariance 34

5.3 Continuum Limits of Shortest Paths Through Random Points and Shortest Path Clustering 35

5.3.1 Continuum Limits of Shortest Paths Through Random Points: The Observation 35

5.3.2 Continuum Limits of Shortest Paths Through Random Points: The Set Up 36

5.4 Theorem 5.6 37

5.5 p-power Weighted Shortest Path Distance and Longest-leg Path Distance 37

5.6 p-wspm, Well Sep


Steven B. Damelin is a mathematical scientist having earned his BSc (Hon), Masters and PhD at the University of the Witwatersrand. His PhD advisor, Doron Lubinsky is Full Professor at Georgia Tech. His research interests include Approximation theory, Manifold Learning, Neural Science, Computer Vision, Data Science and Signal Processing having published over 77 research papers and 2 books. He has held several academic positions including Visiting Scholar at University of Michigan, IMA new Directions Professor, University of Minnesota, Full Professor at Georgia Southern University and Editor, Mathematical Reviews, American Mathematical Society. He resides in Ann Arbor, Michigan, USA.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.