Buch, Englisch, 224 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 522 g
Reihe: Dynamic Modeling and Econometrics in Economics and Finance
Engineering Methods for Economists
Buch, Englisch, 224 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 522 g
Reihe: Dynamic Modeling and Econometrics in Economics and Finance
ISBN: 978-3-031-85255-8
Verlag: Springer Nature Switzerland
The book explores the field of model predictive control (MPC). It reports on the latest developments in MPC, current applications, and presents various subfields of MPC. The book features topics such as uncertain and stochastic MPC variants, learning and neural network approaches, easy-to-use numerical implementations as well as multi-agent systems and scheduling and coordination tasks. While MPC is rooted in engineering science, this book illustrates the potential of using MPC theory and methods in non-engineering sciences and applications such as economics, finance, and environmental sciences.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftstheorie, Wirtschaftsphilosophie
- Wirtschaftswissenschaften Wirtschaftswissenschaften Wirtschaftswissenschaften: Allgemeines
- Wirtschaftswissenschaften Betriebswirtschaft Management Entscheidungsfindung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
- Mathematik | Informatik Mathematik Stochastik
Weitere Infos & Material
Chapter 1. Multi-horizon MPC and Its Application to theIntegrated Power and Thermal Management ofElectri?ed Vehicles (Qiuhao Hu).- Chapter 2. Data/Moment-Driven Approaches for FastPredictive Control of Collective Dynamics (Giacomo Albi).- Chapter 3. Finite-Dimensional Receding Horizon Control ofLinear Time-Varying Parabolic PDEs: StabilityAnalysis and Model-Order Reduction (Behzad Azmi).- Chapter 4. Solving Hybrid Model Predictive ControlProblems via a Mixed-Integer Approach (Iman Nodozi).- Chapter 5. nMPyC – A Python Package for Solving OptimalControl Problems via Model Predictive Control (Jonas Schießl).- Chapter 6. Controllability of Continuous Networks and aKernel-Based Learning Approximation (Michael Herty).- Chapter 7. Economic Model Predictive Control as aSolution to Markov Decision Processes (Dirk Reinhardt).- Chapter 8. Reinforcement Learning with Guarantees (Mario Zanon).