E-Book, Englisch, Band 131, 521 Seiten, eBook
Daras / Rassias Modern Discrete Mathematics and Analysis
1. Auflage 2018
ISBN: 978-3-319-74325-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
With Applications in Cryptography, Information Systems and Modeling
E-Book, Englisch, Band 131, 521 Seiten, eBook
Reihe: Springer Optimization and Its Applications
ISBN: 978-3-319-74325-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Chapter 01- Fixed point theorems in generalized b-metric spaces.- Chapter 02- Orlicz dual Brunn-Minkowski theory: addition, dual quermassintegrals and inequalities.- Chapter 03- Modeling cyber security.- Chapter 04- Solutions of hard knapsack problems using extreme pruning.- Chapter 05- A computational intelligence system identifying cyber-attacks on smart energy grids.- Chapter 06- Recent developments of discrete inequalities for convex functions defined on linear spaces with applications.- Chapter 07- Extrapolation methods for estimating the trace of the matrix inverse.- Chapter 08- Moment generating functions and moments of linear positive operators.- Chapter 09- Approximation by Lupas.-Kantorovich operators.- Chapter 10- Enumeration by e.- Chapter 11- Fixed Point and neraly m-dimensional Euler-Lagrange type additive mappings.- Chapter 12- Discrete Mathematics for statistical and probability problems.- Chapter 13- On the use of the fractal box-counting dimension in urban planning.- Chapter 14- Additive-quadratic ?-functional equations in Banach spaces.- Chapter 15- De Bruijn sequences and suffix arrays: analysis and constructions.- Chapter 16- Fuzzy empiristic implication, a new approach.- Chapter 17- Adaptive traffic modelling for network anomaly detection.- Chapter 18- Bounds involving operator s-Godunova-Levin-Dragomir functions.- Chapter 19- Closed-form solutions for some classes of loaded difference equations with initial and nonlocal multipoint conditions.- Chapter 20- Cauchy’s functional equation, Schur’s lemma, one-dimensional special relativity, and Möbius’s functional equation.- Chapter 21- Plane-geometric aspects of the Pohlke’s fundamental theorem of Axonometry.- Chapter 22- Diagonal fixed points of geometric contractions.- Chapter 23- A more accurate Hardy–Hilbert-type inequality with internal variables.- Chapter 24- An optimized unconditionally-stable approach for the solution of discretized Maxwell’s equations.