Deeba / Ye / Johnson | Machine Learning for Medical Image Reconstruction | Buch | 978-3-030-61597-0 | sack.de

Buch, Englisch, 163 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 271 g

Reihe: Image Processing, Computer Vision, Pattern Recognition, and Graphics

Deeba / Ye / Johnson

Machine Learning for Medical Image Reconstruction

Third International Workshop, MLMIR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings
1. Auflage 2020
ISBN: 978-3-030-61597-0
Verlag: Springer International Publishing

Third International Workshop, MLMIR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings

Buch, Englisch, 163 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 271 g

Reihe: Image Processing, Computer Vision, Pattern Recognition, and Graphics

ISBN: 978-3-030-61597-0
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually.

The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.

Deeba / Ye / Johnson Machine Learning for Medical Image Reconstruction jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Deep Learning for Magnetic Resonance Imaging.- 3D FLAT: Feasible Learned Acquisition Trajectories for Accelerated MRI.- Deep Parallel MRI Reconstruction Network Without Coil Sensitivities.- Neural Network-based Reconstruction in Compressed Sensing MRI Without Fully-sampled Training Data.- Deep Recurrent Partial Fourier Reconstruction in Diffusion MRI.- Model-based Learning for Quantitative Susceptibility Mapping.- Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks.- Weakly-supervised Learning for Single-step Quantitative Susceptibility Mapping.- Data-Consistency in Latent Space and Online Update Strategy to Guide GAN for Fast MRI Reconstruction.- Extending LOUPE for K-space Under-sampling Pattern Optimization in Multi-coil MRI.- AutoSyncoder: An Adversarial AutoEncoder Framework for Multimodal MRI Synthesis.- Deep Learning for General Image Reconstruction.- A deep prior approach to magnetic particle imaging.- End-To-End Convolutional NeuralNetwork for 3D Reconstruction of Knee Bones From Bi-Planar X-Ray Images.- Cellular/Vascular Reconstruction using a Deep CNN for Semantic Image Preprocessing and Explicit Segmentation.- Improving PET-CT Image Segmentation via Deep Multi-Modality Data Augmentation.- Stain Style Transfer of Histopathology Images Via Structure-Preserved Generative Learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.