Del Bue / Tommasi / Canton | Computer Vision - ECCV 2024 Workshops | Buch | 978-3-031-91720-2 | sack.de

Buch, Englisch, 352 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 616 g

Reihe: Lecture Notes in Computer Science

Del Bue / Tommasi / Canton

Computer Vision - ECCV 2024 Workshops

Milan, Italy, September 29-October 4, 2024, Proceedings, Part XVI
Erscheinungsjahr 2025
ISBN: 978-3-031-91720-2
Verlag: Springer Nature Switzerland

Milan, Italy, September 29-October 4, 2024, Proceedings, Part XVI

Buch, Englisch, 352 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 616 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-91720-2
Verlag: Springer Nature Switzerland


The multi-volume set LNCS 15623 until LNCS 15646 constitutes the proceedings of the workshops that were held in conjunction with the 18th European Conference on Computer Vision, ECCV 2024, which took place in Milan, Italy, during September 29–October 4, 2024. 

These LNCS volumes contain 574 accepted papers from 53 of the 73 workshops. The list of workshops and distribution of the workshop papers in the LNCS volumes can be found in the preface that is freely accessible online.

Del Bue / Tommasi / Canton Computer Vision - ECCV 2024 Workshops jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Fine-tuning a Multiple Instance Learning Feature Extractor with Masked Context Modelling and Knowledge Distillation.
.- Advancing Medical Radiograph Representation Learning: A Hybrid Pretraining Paradigm with Multilevel Semantic Granularity.
.- Can virtual staining for high-throughput screening generalize?.
.- SAM-Med3D: Towards General-purpose Segmentation Models for Volumetric Medical Images.
.- A Good Feature Extractor Is All You Need for Weakly Supervised Pathology Slide Classification.
.- Boosting Medical Image Registration Network Inherently via Collaborative Learning.
.- Genetic Information Analysis of Age-Related Macular Degeneration Fellow Eye Using Multi-Modal Selective ViT.
.- CHOTA: A Higher Order Accuracy Metric for Cell Tracking.
.- Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification.
.- Adapting Segment Anything Model to Melanoma Segmentation in Microscopy Slide Images.
.- BATseg: Boundary-aware Multiclass Spinal Cord Tumor Segmentation on 3D MRI Scans.
.- Affinity-VAE: incorporating prior knowledge in representation learning from scientific images.
.- Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models.
.- Going Beyond U-Net: Assessing Vision Transformers for Semantic Segmentation in Microscopy Image Analysis.
.- SS-MIL: Attention-Based Selective Correlated Multiple Instance Learning for Whole Slide Image Classification.
.- MicroSSIM: Improved Structured Similarity for Comparing Microscopy Data.
.- Generalized Segmentation for Maxillary Sinus and Mandibular Canal in Dental Panoramic X-rays.
.- MobileUNETR: A Lightweight End-To-End Hybrid Vision Transformer For Efficient Medical Image Segmentation.
.- NCT-CRC-HE: Not All Histopathological Datasets Are Equally Useful.
.- Tracking one-in-a-million: Large-scale benchmark for microbial single-cell tracking with experiment-aware robustness metrics.
.- A Novel Approach to Linking Histology Images with DNA Methylation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.