Devine / Pawlus | Hands-On Deep Learning with R | E-Book | sack.de
E-Book

E-Book, Englisch, 330 Seiten

Devine / Pawlus Hands-On Deep Learning with R

A practical guide to designing, building, and improving neural network models using R
1. Auflage 2020
ISBN: 978-1-78899-378-4
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection

A practical guide to designing, building, and improving neural network models using R

E-Book, Englisch, 330 Seiten

ISBN: 978-1-78899-378-4
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection



No detailed description available for "Hands-On Deep Learning with R".

Devine / Pawlus Hands-On Deep Learning with R jetzt bestellen!

Weitere Infos & Material


Table of Contents - Machine Learning Basics

- Setting Up R for Deep Learning

- Artificial Neural Networks

- Convolutional Neural Networks for Image Recognition
- Multilayer Perceptron Neural Networks for Signal Detection
- Neural Collaborative Filtering Using Embeddings
- Deep Learning for Natural Language Processing
- Long Short-Term Memory Networks for Stock Forecast
- Generative Adversarial Networks for Face Generation
- Reinforcement Learning for gaming

- Deep Q Learning for Maze Solving


Devine Rodger:

Rodger Devine is the Associate Dean of External Affairs for Strategy and Innovation at the USC Dornsife College of Letters, Arts, and Sciences. Rodger's portfolio includes advancement operations, BI, leadership annual giving, program innovation, prospect development, and strategic information management. Prior to USC, Rodger served as the Director of Information, Analytics, and Annual Giving at the Michigan Ross School of Business. Rodger brings nearly 20 years of experience in software engineering, IT operations, BI, project management, organizational development, and leadership. Rodger completed his Masters in data science at the University of Michigan and is a doctoral student in the OCL program at the USC Rossier School of Education.Pawlus Michael:

Michael Pawlus is a data scientist at The Ohio State University where he is currently part of the team building of the data science infrastructure for the Advancement department while also leading the implementation of innovative projects there. Prior to this, Michael was a data scientist at the University of Southern California. In addition to this work, Michael has chaired data science education conferences, published articles on the role of data science within fundraising and currently serves on committees where he is focused on providing a wider variety of educational offerings as well as increasing the diversity of content creators in this space. Michael holds degrees from Grand Valley State University and the University of Sheffield.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.