Dijkstra | Nonlinear Physical Oceanography | E-Book | sack.de
E-Book

E-Book, Englisch, 548 Seiten, eBook

Reihe: Atmospheric and Oceanographic Sciences Library

Dijkstra Nonlinear Physical Oceanography

A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño,
2. revidierte and enlarged Auflage 2005
ISBN: 978-1-4020-2263-0
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño,

E-Book, Englisch, 548 Seiten, eBook

Reihe: Atmospheric and Oceanographic Sciences Library

ISBN: 978-1-4020-2263-0
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark



In the ?rst edition of this book (publishedby Kluwer Academic in November 2000) the methodology of dynamical systems theory was introduced and appli- ˜ cations of this theory to the large-scale ocean circulation and El Nino were p- vided. Surprisedby the favorable reactions, I decided to make a second edition of the book which could be more easily used as a textbook for a graduate (700-level) course. The ?rst edition has undergone a substantial rewrite on three aspects: (i)thetext has been adapted at manylocations to improve clarity and readability, (ii)many recent results on thewind-driven ocean circulation, thethermohaline ˜ circulation and El Nino have been included, and (iii) a number of exercises have been added at the end of each chapter. In chapter 1, the description of what is known from observations on the global ocean circulation has been improved by including, for example, recent estimates of transport quantities. Both thechapters 2 and 3 have only slightly changed; in chapter 3, the text on homoclinic orbits has been extended as these type of phenomena have now clearly been found in the wind-driven double-gyre ocean circulation (as presented in chapter 5). In chapter 4, I have added a paragraph on the computation of isolated branches of steady states and the text on the iterative linear systems solvers has been shortened.

Dijkstra Nonlinear Physical Oceanography jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Background Material.- A Dynamical Systems Point of View.- Numerical Techniques.- The Wind-Driven Circulation.- The Thermohaline Circulation.- The Dynamics and Physics of ENSO.


Henk A. Dijkstra is Full Professor for Physical Oceanography at Colorado State University, Fort Collins. After graduating in applied mathematics at the University of Groningen in 1984, he worked on his Ph.D. in Groningen on a Spacelab experiment and on Marangoni convection under microgravity conditions. He continued this research in chemical engineering at Cornell University. In 1990 he started working on physical oceanography and became Assistant Professor at Utrecht University, in 1996 an Associate Professor and in 2001 a Full Professor there. Henk Dijkstra has developed, consequently, the nonlinear dynamical systems approach to oceanography. Mainly to emphasize that he first computed explicit bifurcation diagram for a global ocean circulation model and explained the structure of equilibria for a hierarchy of models going from a single-hemispheric to the global configuration. He discovered the multidecadal mode in single-hemispheric thermohaline flows and explained its relevance in the Atlantic Multidecadal Oscillation. He demonstrated the existence of steady separation patterns in northern hemispheric western boundary currents and explained the subannual variability through barotropic destabilization of these states. He first analysed the stability of the double-gyre wind driven flows in quasi-geostrophic one- and two-layer models and demonstrated its relevance with respect to low-frequency variability of the ocean gyres.He became member of the Royal Dutch Academy of Sciences and Arts in 2002. He has published more than 100 papers and a book on Nonlinear Physical Oceanography in 2000. He has organized for several years a session at EGS/EGU meetings on this topic.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.