E-Book, Englisch, 508 Seiten
Dill The Finite Element Method for Mechanics of Solids with ANSYS Applications
1. Auflage 2012
ISBN: 978-1-4398-4584-4
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 508 Seiten
Reihe: Advances in Engineering Series
ISBN: 978-1-4398-4584-4
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
While the finite element method (FEM) has become the standard technique used to solve static and dynamic problems associated with structures and machines, ANSYS software has developed into the engineer’s software of choice to model and numerically solve those problems.
An invaluable tool to help engineers master and optimize analysis, The Finite Element Method for Mechanics of Solids with ANSYS Applications explains the foundations of FEM in detail, enabling engineers to use it properly to analyze stress and interpret the output of a finite element computer program such as ANSYS.
Illustrating presented theory with a wealth of practical examples, this book covers topics including:
- Essential background on solid mechanics (including small- and large-deformation elasticity, plasticity, and viscoelasticity) and mathematics
- Advanced finite element theory and associated fundamentals, with examples
- Use of ANSYS to derive solutions for problems that deal with vibration, wave propagation, fracture mechanics, plates and shells, and contact
Totally self-contained, this text presents step-by-step instructions on how to use ANSYS Parametric Design Language (APDL) and the ANSYS Workbench to solve problems involving static/dynamic structural analysis (both linear and non-linear) and heat transfer, among other areas. It will quickly become a welcome addition to any engineering library, equally useful to students and experienced engineers alike.
Zielgruppe
First year graduates in mechanical, aerospace, and civil engineering.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Physik, Chemie für Ingenieure
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
- Technische Wissenschaften Technik Allgemein Konstruktionslehre und -technik
- Naturwissenschaften Physik Mechanik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde
- Naturwissenschaften Physik Angewandte Physik
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
Weitere Infos & Material
Chapter 1: Finite Element Concepts
1.1 Introduction
1.2 Direct Stiffness Method
1.2.1 Merging the Element Stiffness Matrices
1.2.2 Augmenting the Element Stiffness Matrix
1.2.3 Stiffness Matrix Is Banded
1.3 The Energy Method
1.4 Truss Example
1.5 Axially Loaded Rod Example
1.5.1 Augmented Matrices for the Rod
1.5.2 Merge of Element Matrices for the Rod
1.6 Force Method
1.7 Other Structural Components
1.7.1 Space Truss
1.7.2 Beams and Frames
1.7.2.1 General Beam Equations
1.7.3 Plates and Shells
1.7.4 Two- or Three-Dimensional Solids
1.8 Problems
References
Bibliography
Chapter 2: Linear Elasticity
2.1 Basic Equations
2.1.1 Geometry of Deformation
2.1.2 Balance of Momentum
2.1.3 Virtual Work
2.1.4 Constitutive Relations
2.1.5 Boundary Conditions and Initial Conditions
2.1.6 Incompressible Materials
2.1.7 Plane Strain
2.1.8 Plane Stress
2.1.9 Tensile Test
2.1.10 Pure Shear
2.1.11 Pure Bending
2.1.12 Bending and Shearing
2.1.13 Properties of Solutions
2.1.14 A Plane Stress Example with a Singularity in Stress
2.2 Potential Energy
2.2.1 Proof of Minimum Potential Energy
2.3 Matrix Notation
2.4 Axially Symmetric Deformations
2.4.1 Cylindrical Coordinates
2.4.2 Axial Symmetry
2.4.3 Plane Stress and Plane Strain
2.5 Problems
References
Bibliography
Chapter 3: Finite Element Method for Linear Elasticity
3.1 Finite Element Approximation
3.1.1 Potential Energy
3.1.2 Finite Element Equations
3.1.3 Basic Equations in Matrix Notation
3.1.4 Basic Equations Using Virtual Work
3.1.5 Underestimate of Displacements
3.1.6 Nondimensional Equations
3.1.7 Uniaxial Stress
3.2 General Equations for an Assembly of Elements
3.2.1 Generalized Variational Principle
3.2.2 Potential Energy
3.2.3 Hybrid Displacement Functional
3.2.4 Hybrid Stress and Complementary Energy
3.2.5 Mixed Methods of Analysis
3.3 Nearly Incompressible Materials
3.3.1 Nearly Incompressible Plane Strain
Bibliography
Chapter 4: Th