E-Book, Englisch, 290 Seiten
Reihe: De Gruyter Textbook
Drábek / Holubová Elements of Partial Differential Equations
2. revised and extended Auflage 2014
ISBN: 978-3-11-031667-4
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 290 Seiten
Reihe: De Gruyter Textbook
ISBN: 978-3-11-031667-4
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Zielgruppe
Students of Mathematics, Physics, and Engineering; Academic Libra
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1;Preface;5
2;Contents;9
3;1 Motivation, Derivation of Basic Mathematical Models;15
3.1;1.1 Conservation Laws;15
3.1.1;1.1.1 Evolution Conservation Law;17
3.1.2;1.1.2 Stationary Conservation Law;19
3.1.3;1.1.3 Conservation Law in One Dimension;19
3.2;1.2 Constitutive Laws;20
3.3;1.3 Basic Models;21
3.3.1;1.3.1 Convection and Transport Equation;21
3.3.2;1.3.2 Diffusion in One Dimension;23
3.3.3;1.3.3 Heat Equation in One Dimension;24
3.3.4;1.3.4 Heat Equation in Three Dimensions;24
3.3.5;1.3.5 String Vibrations and Wave Equation in One Dimension;25
3.3.6;1.3.6 Wave Equation in Two Dimensions – Vibrating Membrane;29
3.3.7;1.3.7 Laplace and Poisson Equations – Steady States;30
3.4;1.4 Exercises;32
4;2 Classification, Types of Equations, Boundary and Initial Conditions;35
4.1;2.1 Basic Types of Equations;35
4.2;2.2 Classical, General, Generic and Particular Solutions;37
4.3;2.3 Boundary and Initial Conditions;40
4.4;2.4 Well-Posed and Ill-Posed Problems;42
4.5;2.5 Classification of Linear Equations of the Second Order;43
4.6;2.6 Exercises;46
5;3 Linear Partial Differential Equations of the First Order;51
5.1;3.1 Equations with Constant Coefficients;51
5.1.1;3.1.1 Geometric Interpretation – Method of Characteristics;52
5.1.2;3.1.2 Coordinate Method;56
5.1.3;3.1.3 Method of Characteristic Coordinates;57
5.2;3.2 Equations with Non-Constant Coefficients;59
5.2.1;3.2.1 Method of Characteristics;59
5.2.2;3.2.2 Method of Characteristic Coordinates;62
5.3;3.3 Problems with Side Conditions;64
5.4;3.4 Solution in Parametric Form;69
5.5;3.5 Exercises;74
6;4 Wave Equation in One Spatial Variable – Cauchy Problem in R;79
6.1;4.1 General Solution of the Wave Equation;79
6.1.1;4.1.1 Transformation to System of Two First Order Equations;79
6.1.2;4.1.2 Method of Characteristics;80
6.2;4.2 Cauchy Problem on the Real Line;81
6.3;4.3 Principle of Causality;87
6.4;4.4 Wave Equation with Sources;88
6.4.1;4.4.1 Use of Green’s Theorem;90
6.4.2;4.4.2 Operator Method;91
6.5;4.5 Exercises;93
7;5 Diffusion Equation in One Spatial Variable – Cauchy Problem in R;97
7.1;5.1 Cauchy Problem on the Real Line;97
7.2;5.2 Diffusion Equation with Sources;105
7.3;5.3 Exercises;108
8;6 Laplace and Poisson Equations in Two Dimensions;111
8.1;6.1 Invariance of the Laplace Operator;111
8.2;6.2 Transformation of the Laplace Operator into Polar Coordinates;112
8.3;6.3 Solutions of Laplace and Poisson Equations in R2;113
8.3.1;6.3.1 Laplace Equation;113
8.3.2;6.3.2 Poisson Equation;114
8.4;6.4 Exercises;115
9;7 Solutions of Initial Boundary Value Problems for Evolution Equations;117
9.1;7.1 Initial Boundary Value Problems on Half-Line;117
9.1.1;7.1.1 Diffusion and Heat Flow on Half-Line;117
9.1.2;7.1.2 Wave on the Half-Line;119
9.1.3;7.1.3 Problems with Nonhomogeneous Boundary Condition;123
9.2;7.2 Initial Boundary Value Problem on Finite Interval, Fourier Method;123
9.2.1;7.2.1 Dirichlet Boundary Conditions, Wave Equation;125
9.2.2;7.2.2 Dirichlet Boundary Conditions, Diffusion Equation;130
9.2.3;7.2.3 Neumann Boundary Conditions;132
9.2.4;7.2.4 Robin Boundary Conditions;134
9.2.5;7.2.5 Principle of the Fourier Method;138
9.3;7.3 Fourier Method for Nonhomogeneous Problems;139
9.3.1;7.3.1 Nonhomogeneous Equation;139
9.3.2;7.3.2 Nonhomogeneous Boundary Conditions and Their Transformation;141
9.4;7.4 Transformation to Simpler Problems;143
9.4.1;7.4.1 Lateral Heat Transfer in Bar;143
9.4.2;7.4.2 Problem with Convective Term;144
9.5;7.5 Exercises;145
10;8 Solutions of Boundary Value Problems for Stationary Equations;154
10.1;8.1 Laplace Equation on Rectangle;155
10.2;8.2 Laplace Equation on Disc;157
10.3;8.3 Poisson Formula;159
10.4;8.4 Exercises;160
11;9 Methods of Integral Transforms;164
11.1;9.1 Laplace Transform;164
11.2;9.2 Fourier Transform;170
11.3;9.3 Exercises;176
12;10 General Principles;180
12.1;10.1 Principle of Causality (Wave Equation);180
12.2;10.2 Energy Conservation Law (Wave Equation);183
12.3;10.3 Ill-Posed Problem (Diffusion Equation for Negative t);185
12.4;10.4 Maximum Principle (Heat Equation);187
12.5;10.5 Energy Method (Diffusion Equation);190
12.6;10.6 Maximum Principle (Laplace Equation);191
12.7;10.7 Consequences of Poisson Formula (Laplace Equation);193
12.8;10.8 Comparison of Wave, Diffusion and Laplace Equations;196
12.9;10.9 Exercises;196
13;11 Laplace and Poisson equations in Higher Dimensions;201
13.1;11.1 Invariance of the Laplace Operator and its Transformation into Spherical Coordinates;201
13.2;11.2 Green’s First Identity;204
13.3;11.3 Properties of Harmonic Functions;204
13.3.1;11.3.1 Mean Value Property and Strong Maximum Principle;204
13.3.2;11.3.2 Dirichlet Principle;206
13.3.3;11.3.3 Uniqueness of Solution of Dirichlet Problem;207
13.3.4;11.3.4 Necessary Condition for the Solvability of Neumann Problem;208
13.4;11.4 Green’s Second Identity and Representation Formula;209
13.5;11.5 Boundary Value Problems and Green’s Function;211
13.6;11.6 Dirichlet Problem on Half-Space and on Ball;213
13.6.1;11.6.1 Dirichlet Problem on Half-Space;213
13.6.2;11.6.2 Dirichlet Problem on a Ball;216
13.7;11.7 Exercises;220
14;12 Diffusion Equation in Higher Dimensions;223
14.1;12.1 Cauchy Problem in R3;223
14.1.1;12.1.1 Homogeneous Problem;223
14.1.2;12.1.2 Nonhomogeneous Problem;225
14.2;12.2 Diffusion on Bounded Domains, Fourier Method;226
14.2.1;12.2.1 Fourier Method;227
14.2.2;12.2.2 Nonhomogeneous Problems;234
14.3;12.3 General Principles for Diffusion Equation;236
14.4;12.4 Exercises;237
15;13 Wave Equation in Higher Dimensions;239
15.1;13.1 Cauchy Problem in R3 – Kirchhoff’s Formula;239
15.2;13.2 Cauchy Problem in R2;242
15.3;13.3 Wave with Sources in R3;245
15.4;13.4 Characteristics, Singularities, Energy and Principle of Causality;247
15.4.1;13.4.1 Characteristics;247
15.4.2;13.4.2 Energy;248
15.4.3;13.4.3 Principle of Causality;249
15.5;13.5 Wave on Bounded Domains, Fourier Method;252
15.6;13.6 Exercises;268
16;A Sturm-Liouville Problem;273
17;B Bessel Functions;275
18;Some Typical Problems Considered in this Book;281
19;Notation;283
20;Bibliography;285
21;Index;287