Buch, Englisch, 456 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 709 g
Buch, Englisch, 456 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 709 g
Reihe: Advances in Mechanics and Mathematics
ISBN: 978-1-4757-7917-2
Verlag: Springer US
A unified approach is proposed for applied mechanics and optimal control theory. The Hamilton system methodology in analytical mechanics is used for eigenvalue problems, vibration theory, gyroscopic systems, structural mechanics, wave-guide, LQ control, Kalman filter, robust control etc. All aspects are described in the same unified methodology. Numerical methods for all these problems are provided and given in meta-language, which can be implemented easily on the computer. Precise integration methods both for initial value problems and for two-point boundary value problems are proposed, which result in the numerical solutions of computer precision.
Key Features of the text include:
-Unified approach based on Hamilton duality system theory and symplectic mathematics. -Gyroscopic system vibration, eigenvalue problems.
-Canonical transformation applied to non-linear systems.
-Pseudo-excitation method for structural random vibrations.
-Precise integration of two-point boundary value problems.
-Wave propagation along wave-guides, scattering.
-Precise solution of Riccati differential equations.
-Kalman filtering.
-HINFINITY theory of control and filter.
Zielgruppe
Research
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Kontinuumsmechanik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Optimierung
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
to analytical dynamics.- Vibration Theory.- Probability and stochastic process.- Random vibration of structures.- Elastic system with single continuous coordinate.- Linear optimal control, theory and computation.