Dudek | Deep Learning Models for Economic Research | Buch | 978-1-041-06270-7 | www.sack.de

Buch, Englisch, 484 Seiten, Format (B × H): 156 mm x 234 mm

Reihe: Routledge Studies in Economic Theory, Method and Philosophy

Dudek

Deep Learning Models for Economic Research


1. Auflage 2025
ISBN: 978-1-041-06270-7
Verlag: Taylor & Francis Ltd

Buch, Englisch, 484 Seiten, Format (B × H): 156 mm x 234 mm

Reihe: Routledge Studies in Economic Theory, Method and Philosophy

ISBN: 978-1-041-06270-7
Verlag: Taylor & Francis Ltd


In today’s data-driven world, the ability to make sense of complex, high-dimensional datasets is crucial for economists and data scientists. Traditional quantitative methods, while powerful, often struggle to keep up with the complexities of modern economic challenges. This book bridges this gap, integrating cutting-edge machine learning techniques with established economic analysis to provide new, more accurate insights.

The book offers a comprehensive approach to understanding and applying neural networks and deep learning models in the context of conducting economic research. It starts by laying the groundwork with essential quantitative methods such as cluster analysis, regression, and factor analysis, then demonstrates how these can be enhanced with deep learning techniques like recurrent neural networks (RNNs), convolutional neural networks (CNNs), and transformers. By guiding readers through real-world examples, complete with Python code and access to datasets, it showcases the practical benefits of neural networks in solving complex economic problems, such as fraud detection, sentiment analysis, stock price forecasting, and inflation factor analysis. Importantly, the book also addresses critical concerns about the “black box” nature of deep learning, offering interpretability techniques like Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) to demystify model predictions.

The book is essential reading for economists, data scientists, and professionals looking to deepen their understanding of AI’s role in economic modeling. It is also an accessible resource for non-experts interested in how machine learning is transforming economic analysis.

Dudek Deep Learning Models for Economic Research jetzt bestellen!

Zielgruppe


Postgraduate


Autoren/Hrsg.


Weitere Infos & Material


1. Quantitative methods in economics: Deep learning models applications 2. Deep learning model techniques 3. Regression and discrimination problems with deep neural networks 4. Explanatory model analysis for deep learning models 5. Time series analysis and forecasting with deep learning models 6. Sentiment analysis and text mining with deep learning models 7. Other applications of deep learning models Appendices


Andrzej Dudek is a Professor in the Department of Computer Science and Econometrics, Wroclaw University of Economics and Business, Wroclaw, Poland.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.