E-Book, Deutsch, 267 Seiten, eBook
Dümbgen Stochastik für Informatiker
2003
ISBN: 978-3-642-55565-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Deutsch, 267 Seiten, eBook
Reihe: Statistik und ihre Anwendungen
ISBN: 978-3-642-55565-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
1 Einleitung.- 2 Laplace-Verteilungen und diskrete Modelle.- 2.1 Stichproben und Permutationen.- 2.2 Diskrete Wahrscheinlichkeitsräume.- 2.3 Übungsaufgaben.- 3 Bedingte Wahrscheinlichkeiten und stochastische Unabhängigkeit.- 3.1 Kolmogorovs Axiome für Wahrscheinlichkeiten.- 3.2 Bedingte Wahrscheinlichkeiten.- 3.3 Stochastische Unabhängigkeit.- 3.4 Das Hardy-Weinberg-Gesetz.- 3.5 Produkträume.- 3.6 Übungsaufgaben.- 4 Zufallsvariablen und spezielle Verteilungen.- 4.1 Stochastische Unabhängigkeit.- 4.2 Spezielle Verteilungen.- 4.3 Kodierungen von Permutationen.- 4.4 Faltungen.- 4.5 Die Laufzeit von ‘QuickSort’.- 4.6 Übungsaufgaben.- 5 Statistische Anwendungen: Konfidenzbereiche.- 5.1 Konfidenzbereiche.- 5.2 Konfidenzschranken für Binomialparameter.- 5.3 Konfidenzschranken für hypergeometrische Verteilungen.- 5.4 Vergleich zweier Binomialparameter.- 5.5 Übungsaufgaben.- 6 Erwartungswerte und Standardabweichungen.- 6.1 Definition und Eigenschaften des Erwartungswertes.- 6.2 Die Markov-Ungleichung.- 6.3 Produkte von Zufallsvariablen.- 6.4 Varianzen und Standardabweichungen.- 6.5 Kovarianzen.- 6.6 Anwendungen.- 6.7 Das schwache Gesetz der großen Zahlen.- 6.8 Übungsaufgaben.- 7 Erzeugende Funktionen und Exponentialungleichungen.- 7.1 Erzeugende Funktionen.- 7.2 Momentenerzeugende Funktionen.- 7.3 Exponentialungleichungen.- 7.4 Die Hoeffding-Ungleichung.- 7.5 Übungsaufgaben.- 8 Informationstheorie.- 8.1 Fragestrategien und Kodes.- 8.2 Entropie.- 8.3 Optimale Kodierung nach der Huffman-Methode.- 8.4 Übungsaufgaben.- 9 Allgemeine Wahrscheinlichkeitsräume.- 9.1 Die Kolmogorovschen Axiome.- 9.2 Existenz und Eindeutigkeit von Maßen.- 9.3 Bernoullifolgen.- 9.4 Wahrscheinlichkeitsmaße auf R.- 9.5 Übungsaufgaben.- 10 Integrale und Erwartungswerte.- 10.1Lebesgue-Integrale.- 10.2 Erwartungswerte.- 10.3 Der Satz von Fubini.- 10.4 Die Transformationsformel für das Lebesguemaß.- 10.5 Starke Gesetze der großen Zahlen.- 10.6 Übungsaufgaben.- 11 Computersimulation von Zufallsvariablen.- 11.1 Monte-Carlo-Schätzer.- 11.2 Pseudozufallszahlen.- 11.3 Acceptance-Rejection-Verfahren.- 11.4 Übungsaufgaben.- 12 Markovketten.- 12.1 Definition, Beispiele und allgemeine Eigenschaften.- 12.2 Homogene Markovketten.- 12.3 Absorptionswahrscheinlichkeiten.- 12.4 Das Langzeitverhalten.- 12.5 Simulated Annealing.- 12.6 Übungsaufgaben.- 13 Approximation von Verteilungen.- 13.1 Die Poissonapproximation.- 13.2 Poissonprozesse.- 13.3 Normalapproximationen.- 13.4 Übungsaufgaben.- 14 Maximum-Likelihood-Schätzer und EM-Algorithmus.- 14.1 Maximum-Likelihood-Schätzer.- 14.2 Der Expectation-Maximization-Algorithmus.