Dufresne | Nanocellulose | E-Book | sack.de
E-Book

E-Book, Englisch, 475 Seiten

Dufresne Nanocellulose

From Nature to High Performance Tailored Materials

E-Book, Englisch, 475 Seiten

ISBN: 978-3-11-025460-0
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This specialist monograph provides an overview of the recent research on the fundamental and applied properties of nanoparticles extracted from cellulose, the most abundant polymer on the planet and an essential renewable resource. Given the rapid advancements in the field and the high level of interest within the scientific and industrial communities, this timely book will be required reading for all those working with nanocellulose in the life sciences and bio-based applications, biological, chemical and agricultural engineering, organic chemistry and materials science. The author pioneered the use of cellulose nanoparticles (cellulose nanocrystals or whiskers and cellulose microfibrils) in nanocomposite applications.The book combines a general introduction to cellulose and basic techniques with more advanced chapters on specific properties and applications of nanocellulose.
Dufresne Nanocellulose jetzt bestellen!

Zielgruppe


Researchers in the life sciences and bio-based applications, biological, chemical and agricultural engineering, organic chemistry and materials science.


Autoren/Hrsg.


Weitere Infos & Material


1;Preface;7
2;1 Cellulose and potential reinforcement;17
2.1;1.1 Polysaccharides;17
2.2;1.2 Chemical structure of the cellulose macromolecul;19
2.3;1.3 Biosynthesis of cellulose;21
2.4;1.4 Polymorphism of cellulose;24
2.4.1;1.4.1 Cellulose I;24
2.4.2;1.4.2 Cellulose II;26
2.4.3;1.4.3 Cellulose III;26
2.4.4;1.4.4 Cellulose IV;27
2.5;1.5 Cellulose microfibrils;27
2.6;1.6 Hierarchical structure of plants and natural fibers;31
2.7;1.7 Potential reinforcement of cellulose;35
2.7.1;1.7.1 Mechanical properties of natural fibers;36
2.7.2;1.7.2 Mechanical properties of cellulose microfibrils;39
2.7.3;1.7.3 Mechanical properties of cellulose crystal;41
2.8;1.8 Cellulose-based materials;47
2.8.1;1.8.1 Thermoplastically processable cellulose derivatives;48
2.8.2;1.8.2 Cellulose fiber reinforced composites;49
2.9;1.9 Conclusions;50
2.10;1.10 References;51
3;2 Preparation of microfibrillated cellulose;59
3.1;2.1 Fiber fibrillation process;59
3.1.1;2.1.1 Purification of cellulose;60
3.1.2;2.1.2 High-pressure homogenization;61
3.1.3;2.1.3 Grinding;63
3.1.4;2.1.4 Cryocrushing;65
3.1.5;2.1.5 High-intensity ultrasonication;66
3.1.6;2.1.6 Electrospinning;67
3.2;2.2 Pretreatments;69
3.2.1;2.2.1 Enzymatic pretreatment;70
3.2.2;2.2.2 Carboxymethylation;72
3.2.3;2.2.3 TEMPO-mediated oxidation pretreatment;73
3.3;2.3 Morphology;74
3.4;2.4 Degree of fibrillation;78
3.4.1;2.4.1 Turbidity of the suspension;78
3.4.2;2.4.2 Viscosity of the suspension;78
3.4.3;2.4.3 Porosity and density;78
3.4.4;2.4.4 Mechanical properties;81
3.4.5;2.4.5 Water retention;81
3.4.6;2.4.6 Degree of polymerization;81
3.4.7;2.4.7 Specific surface area;82
3.4.8;2.4.8 Crystallinity;84
3.5;2.5 Mechanical properties of MFC films;85
3.6;2.6 Optical properties of MFC films;88
3.7;2.7 Functionalization of MFC films;90
3.8;2.8 Conclusions;90
3.9;2.9 References;91
4;3 Preparation of cellulose nanocrystals;99
4.1;3.1 Pioneering works on the acid hydrolysis of cellulose;99
4.2;3.2 Pretreatment of natural fibers;101
4.3;3.3 Acid hydrolysis treatment;102
4.3.1;3.3.1 Sources of cellulose;103
4.3.2;3.3.2 Nature of the acid;106
4.3.3;3.3.3 Effect and optimization of extraction conditions;108
4.4;3.4 Other processes;112
4.4.1;3.4.1 Enzymatic hydrolysis treatment;112
4.4.2;3.4.2 TEMPO oxidation;113
4.4.3;3.4.3 Hydrolysis with gaseous acid;114
4.4.4;3.4.4 Ionic liquid;115
4.5;3.5 Post-treatment of hydrolyzed cellulose;115
4.5.1;3.5.1 Purification of the suspension;115
4.5.2;3.5.2 Fractionation;115
4.5.3;3.5.3 Yield;117
4.6;3.6 Morphology;118
4.7;3.7 Degree of hydrolysis;124
4.7.1;3.7.1 Birefringence of the suspension;124
4.7.2;3.7.2 Viscosity of the suspension;126
4.7.3;3.7.3 Porosity and density;126
4.7.4;3.7.4 Mechanical properties;126
4.7.5;3.7.5 Degree of polymerization;127
4.7.6;3.7.6 Specific surface area;128
4.7.7;3.7.7 Level of sulfation;129
4.7.8;3.7.8 Crystallinity;130
4.8;3.8 Mechanical properties of nanocrystal films;132
4.9;3.9 Conclusions;134
4.10;3.10 References;134
5;4 Bacterial cellulose;141
5.1;4.1 Production of cellulose by bacteria;141
5.2;4.2 Influence of carbon source;145
5.3;4.3 Culture conditions;146
5.4;4.4 In situ modification of bacterial cellulose;149
5.5;4.5 Bacterial cellulose hydrogels;150
5.6;4.6 Bacterial cellulose films;152
5.7;4.7 Applications of bacterial cellulose;156
5.8;4.8 Conclusions;157
5.9;4.9 References;158
6;5 Chemical modification of nanocellulose;163
6.1;5.1 Reactivity of cellulose;163
6.2;5.2 Surface chemistry of cellulose nanoparticles;166
6.3;5.3 Non-covalent surface chemical modification of cellulose nanoparticles;168
6.3.1;5.3.1 Adsorption of surfactant;168
6.3.2;5.3.2 Adsorption of macromolecules;169
6.4;5.4 Esterification, acetylation and acylation;170
6.5;5.5 Cationization;174
6.6;5.6 Silylation;175
6.7;5.7 Carbamination;177
6.8;5.8 TEMPO-mediated oxidation;178
6.9;5.9 Polymer grafting;180
6.9.1;5.9.1 Polymer grafting using the “grafting onto” approach;183
6.9.2;5.9.2 Polymer grafting using the “grafting from” approach;185
6.10;5.10 Click chemistry;190
6.11;5.11 Fluorescently labeled nanocellulose;190
6.12;5.12 Evidence of surface chemical modification;193
6.12.1;5.12.1 X-ray diffraction analysis;193
6.12.2;5.12.2 Dispersion in organic solvent;193
6.12.3;5.12.3 Contact angle measurements;194
6.12.4;5.12.4 Gravimetry;196
6.12.5;5.12.5 Fourier transform infrared (FTIR) spectroscopy;196
6.12.6;5.12.6 Elemental analysis;197
6.12.7;5.12.7 X-ray photoelectron spectroscopy (XPS);197
6.12.8;5.12.8 Time of flight mass spectrometry (TOF-MS);199
6.12.9;5.12.9 Solid-state NMR spectroscopy;199
6.12.10;5.12.10 Thermogravimetric analysis (TGA);200
6.12.11;5.12.11 Differential scanning calorimetry (DSC);200
6.13;5.13 Conclusions;200
6.14;5.14 References;202
7;6 Rheological behavior of nanocellulose suspensions and self-assembly;209
7.1;6.1 Rheological behavior of microfibrillated cellulose suspensions;209
7.2;6.2 Stability of colloidal cellulose nanocrystal suspensions;212
7.3;6.3 Birefringence properties of cellulose nanocrystal suspensions;215
7.4;6.4 Liquid crystalline behavior;216
7.4.1;6.4.1 Liquid crystalline state;216
7.4.2;6.4.2 Liquid crystalline behavior of cellulose derivatives;219
7.4.3;6.4.3 Liquid crystalline behavior of cellulose nanocrystal suspensions;221
7.5;6.5 Onsager theory for neutral rod-like particles;223
7.6;6.6 Theoretical treatment for charged rod-like particles;227
7.7;6.7 Chiral nematic behavior of cellulose nanocrystal suspensions;228
7.7.1;6.7.1 Isotropic-chiral nematic phase separation of cellulose nanocrystal suspensions;228
7.7.2;6.7.2 Effect of the polyelectrolyte nature;230
7.7.3;6.7.3 Effect of the presence of macromolecules;234
7.8;6.8 Liquid crystalline phases of spherical cellulose nanocrystal suspensions;236
7.9;6.9 Rheological behavior of cellulose nanocrystal suspensions;237
7.10;6.10 Light scattering studies;240
7.11;6.11 Preserving the chiral nematic order in solid films;242
7.12;6.12 Conclusions;245
7.13;6.13 References;245
8;7 Processing of nanocellulose-based materials;251
8.1;7.1 Polymer latexes;251
8.2;7.2 Hydrosoluble or hydrodispersible polymers;254
8.3;7.3 Non-aqueous systems;258
8.3.1;7.3.1 Non-aqueous polar medium;259
8.3.2;7.3.2 Solvent mixture and solvent exchange;260
8.3.3;7.3.3 In situ polymerization;262
8.3.4;7.3.4 Surfactant;263
8.3.5;7.3.5 Surface chemical modification;264
8.4;7.4 Foams and aerogels;264
8.5;7.5 Melt compounding;268
8.5.1;7.5.1 Drying of the nanoparticles;268
8.5.2;7.5.2 Melt compounding with a polar matrix;270
8.5.3;7.5.3 Melt compounding using solvent exchange;272
8.5.4;7.5.4 Melt compounding with processing aids;272
8.5.5;7.5.5 Melt compounding with chemically grafted nanoparticles;274
8.5.6;7.5.6 Melt compounding using physical process;276
8.6;7.6 Filtration and impregnation;276
8.7;7.7 Spinning and electrospinning;277
8.8;7.8 Multilayer films;278
8.9;7.9 Conclusions;281
8.10;7.10 References;281
9;8 Thermal properties;293
9.1;8.1 Thermal expansion of cellulose;293
9.1.1;8.1.1 Thermal expansion coefficient of cellulose crystal;293
9.1.2;8.1.2 Thermal expansion coefficient of nanocellulose films;295
9.1.3;8.1.3 Thermal expansion coefficient of nanocellulose-based composites;295
9.2;8.2 Thermal conductivity of nanocellulose-based nanocomposites;297
9.3;8.3 Thermal transitions of cellulose nanoparticles;297
9.4;8.4 Thermal stability of cellulose nanoparticles;299
9.4.1;8.4.1 Thermal degradation of cellulose;299
9.4.2;8.4.2 Thermal stability of microfibrillated cellulose;300
9.4.3;8.4.3 Thermal stability of cellulose nanocrystals;302
9.4.4;8.4.4 Thermal stability of bacterial cellulose and electrospun fibers;308
9.5;8.5 Glass transition of nanocellulose-based nanocomposites;308
9.6;8.6 Melting/crystallization of nanocellulose-based nanocomposites;314
9.6.1;8.6.1 Melting temperature;314
9.6.2;8.6.2 Crystallization temperature;316
9.6.3;8.6.3 Degree of crystallinity;318
9.6.4;8.6.4 Rate of crystallization;323
9.7;8.7 Thermal stability of nanocellulose-based nanocomposites;326
9.8;8.8 Conclusions;329
9.9;8.9 References;329
10;9 Mechanical properties of nanocellulose-based nanocomposites;337
10.1;9.1 Pioneering works;337
10.2;9.2 Modeling of the mechanical behavior;339
10.2.1;9.2.1 Mean field approach;339
10.2.2;9.2.2 Percolation approach;343
10.3;9.3 Influence of the morphology of the nanoparticles;349
10.4;9.4 Influence of the processing method;351
10.5;9.5 Filler/matrix interfacial interactions;355
10.5.1;9.5.1 Polarity of the matrix;361
10.5.2;9.5.2 Chemical modification of the nanoparticles;366
10.5.3;9.5.3 Local alteration of the matrix in the presence of the nanoparticles;369
10.6;9.6 Synergistic reinforcement;372
10.7;9.7 Specific mechanical characterization;373
10.7.1;9.7.1 Compression test;373
10.7.2;9.7.2 Successive tensile test;374
10.7.3;9.7.3 Bulge test 359;16
10.7.4;9.7.4 Raman spectroscopy;376
10.7.5;9.7.5 Atomic force microscopy;377
10.8;9.8 Conclusions;378
10.9;9.9 References;378
11;10 Swelling and barrier properties;389
11.1;10.1 Swelling and sorption properties;389
11.2;10.2 Barrier properties;393
11.2.1;10.2.1 Water vapor transfer rate and water vapor permeability;393
11.2.2;10.2.2 Gas permeability;394
11.3;10.3 Water sorption and swelling properties of microfibrillated cellulose films;396
11.3.1;10.3.1 Influence of pretreatment;398
11.3.2;10.3.2 Influence of post-treatment;398
11.4;10.4 Water vapor transfer rate and water vapor permeability of microfibrillated cellulose films;399
11.4.1;10.4.1 Influence of pretreatment;399
11.4.2;10.4.2 Influence of post-treatment;400
11.5;10.5 Gas permeability of microfibrillated cellulose films;401
11.5.1;10.5.1 Effect of relative humidity;401
11.5.2;10.5.2 Improvement of gas barrier properties;403
11.5.3;10.5.3 Polymer coating;404
11.5.4;10.5.4 Paper coating;405
11.6;10.6 Cellulose nanocrystal films;407
11.7;10.7 Microfibrillated cellulose-based films;408
11.7.1;10.7.1 Swelling and sorption properties;408
11.7.2;10.7.2 Water vapor transfer rate and water vapor permeability;411
11.7.3;10.7.3 Oxygen permeability;411
11.8;10.8 Cellulose nanocrystal-based films;412
11.8.1;10.8.1 Swelling and sorption properties;412
11.8.2;10.8.2 Water vapor transfer rate and water vapor permeability;417
11.8.3;10.8.3 Gas permeability;418
11.8.4;10.8.4 Other substances permeability;420
11.9;10.9 Conclusions;420
11.10;10.10 References;421
12;11 Other polysaccharide nanocrystals;427
12.1;11.1 Starch;427
12.1.1;11.1.1 Composition;427
12.1.2;11.1.2 Multi-scale structure of the granule;430
12.1.3;11.1.3 Polymorphism;432
12.2;11.2 Acid hydrolysis of starch;433
12.3;11.3 Starch nanocrystals;435
12.3.1;11.3.1 Aqueous suspensions;437
12.3.2;11.3.2 Morphology;438
12.3.3;11.3.3 Thermal properties;440
12.3.4;11.3.4 Surface chemical modification;440
12.4;11.4 Starch nanocrystal reinforced polymer nanocomposites;442
12.4.1;11.4.1 Mechanical properties;442
12.4.2;11.4.2 Swelling properties;445
12.4.3;11.4.3 Barrier properties;446
12.5;11.5 Chitin;446
12.5.1;11.5.1 Chemical structure;447
12.5.2;11.5.2 Polymorphism and structure;447
12.6;11.6 Chitin nanocrystals;448
12.6.1;11.6.1 Acid hydrolysis;448
12.6.2;11.6.2 Other treatments;448
12.6.3;11.6.3 Morphology;450
12.6.4;11.6.4 Surface chemical modification;451
12.7;11.7 Chitin nanocrystal reinforced polymer nanocomposites;453
12.7.1;11.7.1 Mechanical properties;453
12.7.2;11.7.2 Swelling resistance;456
12.8;11.8 Conclusions;457
12.9;11.9 References;457
13;12 Conclusions, applications and likely future trends;465
13.1;12.1 References;468
14;13 Index;471


Dufresne, Alain
Alain Dufresne, Grenoble Institute of Technology, Saint Martin d'Hères, France.

Alain Dufresne, Grenoble Institute of Technology, Saint Martin d'Hères, France.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.