Duvant / Lions | Inequalities in Mechanics and Physics | Buch | 978-3-642-66167-9 | www.sack.de

Buch, Englisch, 400 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 721 g

Reihe: Grundlehren der mathematischen Wissenschaften

Duvant / Lions

Inequalities in Mechanics and Physics


1. Auflage 2011
ISBN: 978-3-642-66167-9
Verlag: Springer

Buch, Englisch, 400 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 721 g

Reihe: Grundlehren der mathematischen Wissenschaften

ISBN: 978-3-642-66167-9
Verlag: Springer


1. We begin by giving a simple example of a partial differential inequality that occurs in an elementary physics problem. We consider a fluid with pressure u(x, t) at the point x at the instant t that 3 occupies a region Q oflR bounded by a membrane r of negligible thickness that, however, is semi-permeable, i. e., a membrane that permits the fluid to enter Q freely but that prevents all outflow of fluid. One can prove then (cf. the details in Chapter 1, Section 2.2.1) that au (aZu azu aZu) (1) in Q, t>o, -a - du = g du = -a z + -a z + -a z t Xl X X3 z l g a given function, with boundary conditions in the form of inequalities u(X,t'o => au(x,t)/an=O, XEr, (2) u(x,t)=o => au(x,t)/an?:O, XEr, to which is added the initial condition (3) u(x,O)=uo(x). We note that conditions (2) are non linear; they imply that, at each fixed instant t, there exist on r two regions r~ and n where u(x, t) =0 and au (x, t)/an = 0, respectively. These regions are not prescribed; thus we deal with a "free boundary" problem.

Duvant / Lions Inequalities in Mechanics and Physics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I. Problems of Semi-Permeable Media and of Temperature Control.- 1. Review of Continuum Mechanics.- 2. Problems of Semi-Permeable Membranes and of Temperature Control.- 3. Variational Formulation of Problems of Temperature Control and of Semi-Permeable Walls.- 4. Some Tools from Functional Analysis.- 5. Solution of the Variational Inequalities of Evolution of Section 3.- 6. Properties of Positivity and of Comparison of Solutions.- 7. Stationary Problems.- 8. Comments.- II. Problems of Heat Control.- 1. Heat Control.- 2. Variational Formulation of Control Problems.- 3. Solution of the Problems of Instantaneous Control.- 4. A Property of the Solution of the Problem of Instantaneous Control at a Thin Wall.- 5. Partial Results for Delayed Control.- 6. Comments.- III. Classical Problems and Problems with Friction in Elasticity and Visco-Elasticity.- 1. Introduction.- 2. Classical Linear Elasticity.- 3. Static Problems.- 4. Dynamic Problems.- 5. Linear Elasticity with Friction or Unilateral Constraints.- 6. Linear Visco-Elasticity. Material with Short Memory.- 7. Linear Visco-Elasticity. Material with Long Memory.- 8. Comments.- IV. Unilateral Phenomena in the Theory of Flat Plates.- 1. Introduction.- 2. General Theory of Plates.- 3. Problems to be Considered.- 4. Stationary Unilateral Problems.- 5. Unilateral Problems of Evolution.- 6. Comments.- V. Introduction to Plasticity.- 1. Introduction.- 2. The Elastic Perfectly Plastic Case (Prandtl-Reuss Law) and the Elasto-Visco-Plastic Case.- 3. Discussion of Elasto-Visco-Plastic, Dynamic and Quasi-Static Problems.- 4. Discussion of Elastic Perfectly Plastic Problems.- 5. Discussion of Rigid-Visco-Plastic and Rigid Perfectly Plastic Problems.- 6. Hencky’s Law. The Problem of Elasto-Plastic Torsion.- 7. Locking Material.- 8.Comments.- VI. Rigid Visco-Plastic Bingham Fluid.- 1. Introduction and Problems to be Considered.- 2. Flow in the Interior of a Reservoir. Formulation in the Form of a Variational Inequality.- 3. Solution of the Variational Inequality, Characteristic for the Flow of a Bingham Fluid in the Interior of a Reservoir.- 4. A Regularity Theorem in Two Dimensions.- 5. Newtonian Fluids as Limits of Bingham Fluids.- 6. Stationary Problems.- 7. Exterior Problem.- 8. Laminar Flow in a Cylindrical Pipe.- 9. Interpretation of Inequalities with Multipliers.- 10. Comments.- VII. Maxwell’s Equations. Antenna Problems.- 1. Introduction.- 2. The Laws of Electromagnetism.- 3. Physical Problems to be Considered.- 4. Discussion of Stable Media. First Theorem of Existence and Uniqueness.- 5. Stable Media. Existence of “Strong” Solutions.- 6. Stable Media. Strong Solutions in Sobolev Spaces.- 7. Slotted Antennas. Non-Homogeneous Problems.- 8. Polarizable Media.- 9. Stable Media as Limits of Polarizable Media.- 10. Various Additions.- 11. Comments.- Additional Bibliography and Comments.- 1. Comments.- 2. Bibliography.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.