E-Book, Englisch, Band 53, 0 Seiten
Eggers / Fontelos Singularities: Formation, Structure, and Propagation
Erscheinungsjahr 2015
ISBN: 978-1-316-35539-8
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, Band 53, 0 Seiten
Reihe: Cambridge Texts in Applied Mathematics
ISBN: 978-1-316-35539-8
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Many key phenomena in physics and engineering are described as singularities in the solutions to the differential equations describing them. Examples covered thoroughly in this book include the formation of drops and bubbles, the propagation of a crack and the formation of a shock in a gas. Aimed at a broad audience, this book provides the mathematical tools for understanding singularities and explains the many common features in their mathematical structure. Part I introduces the main concepts and techniques, using the most elementary mathematics possible so that it can be followed by readers with only a general background in differential equations. Parts II and III require more specialised methods of partial differential equations, complex analysis and asymptotic techniques. The book may be used for advanced fluid mechanics courses and as a complement to a general course on applied partial differential equations.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Geowissenschaften Geologie Geophysik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Nichtlineare Wissenschaft
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Angewandte Physik Geophysik
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
Weitere Infos & Material
Preface; Part I. Setting the Scene: 1. What are singularities all about?; 2. Blow-up; 3. Similarity profile; 4. Continuum equations; 5. Local singular expansions; 6. Asymptotic expansions of PDEs; Part II. Formation of Singularities: 7. Drop break-up; 8. A numerical example: drop pinch-off; 9. Slow convergence; 10. Continuation; Part III. Persistent Singularities – Propagation: 11. Shock waves; 12. The dynamical system; 13. Vortices; 14. Cusps and caustics; 15. Contact lines and cracks; Appendix A. Vector calculus; Appendix B. Index notation and the summation convention; Appendix C. Dimensional analysis; References; Index.