Erhard | Designing with Plastics | E-Book | www.sack.de
E-Book

E-Book, Englisch, 530 Seiten

Erhard Designing with Plastics


1. Auflage 2013
ISBN: 978-3-446-41282-8
Verlag: Carl Hanser
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 530 Seiten

ISBN: 978-3-446-41282-8
Verlag: Carl Hanser
Format: PDF
Kopierschutz: 1 - PDF Watermark



'Designing with Plastics' is an indispensable tool for every engineer and designer working with plastic materials. It will assist in the development of plastic parts that are not only functional and esthetically pleasing but also manufacturable while meeting ever increasing end-use requirements.
The short but concise introduction into the specific properties of this material class focuses on the practical needs of the designer and lays the foundation for the following in-depth discussion of part design suitable for production and the intended end-use application. Numerous detailed examples highlight practical tips and rules of thumb for successful part design.
Content:
- Structure and Properties
- Properties of Generic Polymeric Materials
- Physical Properties - Characteristic Values - Test Methods and Procedures
- Geometrically Simple Structural Parts under Static Loads
- Design and Material Considerations for Parts Subjected to Mechanical Loads
- Designing for Production
- Flexing Elements
- Mechanical Fasteners
- Ribbed Structures
- Gear Wheels
- Friction Bearings
- Wheels and Rollers
Erhard Designing with Plastics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Contents;6
2;1 Market Overview;14
2.1;1.1 Examples of Applications from Various Industry Sectors;17
2.1.1;1.1.1 Aerospace;17
2.1.2;1.1.2 Precision Engineering;20
2.1.3;1.1.3 Automotive Engineering;22
2.1.4;1.1.4 General Mechanical Engineering;27
2.1.5;1.1.5 Design of Technical Equipment;28
2.1.6;1.1.6 Construction Industry;31
2.2;1.2 Forecast;35
3;2 Structure and Properties;44
3.1;2.1 Chemical Structure (Constitution);44
3.1.1;2.1.1 Degree of Polymerization – Relative Molecular Weight;47
3.1.2;2.1.2 Homopolymerization and Copolymerization;51
3.2;2.2 Intermolecular Binding Energies (Secondary Valence Bonds);53
3.2.1;2.2.1 Absorption of Water by Polyamides;54
3.3;2.3 Spatial Arrangement of Atoms and Groups of Atoms in Molecules (Configuration);60
3.3.1;2.3.1 Tacticity;61
3.3.2;2.3.2 Branching;61
3.3.3;2.3.3 Cross-Linking;62
3.4;2.4 Architecture of Polymer Systems;63
3.4.1;2.4.1 Homogeneous and Heterogeneous Polymer Mixtures;63
3.4.2;2.4.2 Plasticization;64
3.4.3;2.4.3 Fillers and Reinforcement;64
3.5;2.5 Morphology (Supermolecular Structures);67
3.5.1;2.5.1 Amorphous Microstructure;67
3.5.2;2.5.2 Crystalline Microstructure;68
3.5.3;2.5.3 Anisotropy;73
3.6;2.6 Thermomechanical Ranges;77
3.6.1;2.6.1 Thermoplastics with Amorphous Structure;77
3.6.2;2.6.2 Thermoplastics with Semicrystalline Structure;79
3.6.3;2.6.3 Elastomers;80
3.6.4;2.6.4 Thermosets;80
4;3 Brief Description of the Properties of Generic Polymeric Materials;84
4.1;3.1 Thermoplastics;84
4.1.1;3.1.1 Polymer Blends;93
4.1.2;3.1.2 Functional Polymers;96
4.2;3.2 Elastomers;101
4.3;3.3 Thermosets;103
4.4;3.4 Fibrous Reinforcements;107
4.4.1;3.4.1 Glass Fibers;108
4.4.2;3.4.2 Carbon Fibers;110
4.4.3;3.4.3 Aramid Fibers;110
4.4.4;3.4.4 Metal Fibers, Whiskers, and Ceramic Fibers;110
5;4 Physical Properties – Characteristic Values – Test Methods and Procedures;114
5.1;4.1 Deformation Behavior under Uniaxial Dynamic Tensile Stress (Stress-Strain Experiments);114
5.1.1;4.1.1 Molecular Deformation and Fracture Mechanisms;114
5.1.2;4.1.2 Characteristic Stress-Strain Curves;116
5.1.3;4.1.3 Determination of Stress-Strain Diagrams and Characteristic Properties of Materials;117
5.1.4;4.1.4 Effects of Temperature, Time, and Humidity on Stress-Strain Curves;120
5.1.5;4.1.5 Mathematical Description of Stress-Strain Curves;122
5.2;4.2 Deformation Behavior under Uniaxial, Long-Term, Static Tensile Loads (Tensile Creep Testing);124
5.2.1;4.2.1 Mathematical Description of Creep Curves;126
5.3;4.3 Toughness and Impact Resistance;128
5.3.1;4.3.1 Determination of Tensile Stress-Strain Toughness;129
5.3.2;4.3.2 Determination of Toughness by Flexural Impact Test;129
5.3.3;4.3.3 Penetration or Dart Drop Impact Test;132
5.4;4.4 Behavior under Cyclic Loads;133
5.4.1;4.4.1 Determination of Characteristic Features of Fatigue;135
5.5;4.5 Poisson’s Ratio;138
5.6;4.6 Thermal Properties;140
5.6.1;4.6.1 Thermal Expansion;140
5.6.2;4.6.2 Dimensional Stability;142
5.6.3;4.6.3 Heat Aging;145
5.6.4;4.6.4 Summary Analysis of the Effects of Temperature;149
5.7;4.7 Tribological Properties;149
5.7.1;4.7.1 Fundamentals;151
5.7.2;4.7.2 Friction and Wear in Mated Polymer and Steel Surfaces;158
5.7.3;4.7.3 Friction and Wear in Mated Pairs of Polymeric Materials;169
5.7.4;4.7.5 Effect of Additives on Friction and Wear Properties;171
5.7.5;4.7.6 Stick-Slip;178
5.7.6;4.7.7 Jet Erosion;181
6;5 Calculations for Structures under Mechanical Load – Examples of Geometrically Simple Structural Parts under Static Loads;188
6.1;5.1 Specific Materials and Processing Problems;188
6.1.1;5.1.1 Deformation Behavior under Uniaxial Dynamic Tensile Stress;188
6.2;5.2 Determination of Strength;190
6.2.1;5.2.1 Basic Procedure for Structural Part Design;190
6.2.2;5.2.2 Uniaxial State of Stress;195
6.2.3;5.2.3 Multiaxial State of Stress;197
6.3;5.3 Calculation of Strains and Deformations;203
6.3.1;5.3.1 Linear Elastic Behavior;203
6.3.2;5.3.2 Nonlinear Elastic Behavior;204
6.4;5.4 Analysis of Stress and Deformation in Structures under Flexural Loads with the Aid of a Simple FE Approach;209
6.5;5.5 Calculation of Structural Parts Subjected to Impact Loads;211
6.6;5.6 Structural Design of Fiber-Composite Structures;212
6.6.1;5.6.1 Mechanical Properties of Laminates;213
6.6.2;5.6.2 Methods of Calculation;218
6.7;5.7 Computer-Aided Development;220
6.7.1;5.7.1 Computer-Aided Design (CAD);220
6.7.2;5.7.2 Rapid Prototyping;221
6.7.3;5.7.3 Rapid Tooling;223
7;6 Design and Material Considerations for Parts Subjected to Mechanical Loads;226
7.1;6.1 Flexible Structures;226
7.1.1;6.1.1 Modulus of Elasticity;226
7.1.2;6.1.2 Design Geometry – Moment of Inertia;227
7.1.3;6.1.3 Load–Geometry Interactions;228
7.2;6.2 Flexurally Rigid Structures;231
7.3;6.3 Flexurally Flexible, Torsionally Rigid Structures;233
7.4;6.4 Flexurally Rigid, Torsionally Flexible Structures;234
7.5;6.5 Torsion-Resistant, Torsionally Rigid Structures;234
7.6;6.6 Flexurally and Torsionally Rigid Structures;237
7.7;6.7 Torsionally Flexible Structures;238
7.8;6.8 Tension-Proof, Tensionally Rigid and Torsionally Flexible Structures;238
7.9;6.9 High Shear-Strength, Shear-Resistant Structures;239
7.10;6.10 Pressure-Yielding and Compression-Resistant Structures;240
7.11;6.11 Multifunctional Structures;242
7.12;6.12 Thermal Expansion and Thermal Stress;243
7.13;6.13 Universal Joints;248
8;7 Designing for Production;252
8.1;7.1 Mold Filling;252
8.1.1;7.1.1 Simulation of the Filling Operation;254
8.1.2;7.1.2 Causes of Orientation in Moldings;256
8.1.3;7.1.3 Causes for Formation of Weld Lines and Air Pockets;265
8.2;7.2 Cooling and Solidification;274
8.2.1;7.2.1 Cooling Rate;274
8.2.2;7.2.2 Changes in Dimensions and Tolerances;277
8.2.3;7.2.3 Warpage;284
8.3;7.3 Demolding;290
8.3.1;7.3.1 Draft;293
8.3.2;7.3.2 Demolding of Undercuts;293
8.3.3;7.3.3 Avoidance of Undercuts;298
8.4;7.4 Sandwich Molding (Co-Injection Molding);302
8.4.1;7.4.1 Two-Color Injection Molding;302
8.4.2;7.4.2 Rigid-Flexible Combinations;306
8.4.3;7.4.3 Gas Injection Technology (GIT);312
8.4.4;7.4.5 External Gas Pressure Technology;316
9;8 Flexing Elements;324
9.1;8.1 Snap-Fit Joints;324
9.1.1;8.1.1 Snap-Fit Beams;330
9.1.2;8.1.2 Torsional Snap-Fit Joints;338
9.1.3;8.1.3 Annular Snap-Fit Joints;340
9.1.4;8.1.4 Segmented Annular Snap-Fit Joints;344
9.2;8.2 Elastic Elements;348
9.2.1;8.2.1 Elastic Thermoplastic Materials;348
9.2.2;8.2.2 Springs Made of Fiber-Plastic Composites (Glass-Fiber and Carbon-Fiber Reinforced Plastic);355
9.3;8.3 Integral Hinges and Integral Joints;358
9.3.1;8.3.1 Manufacture of Integral Hinges and Integral Joints;359
9.3.2;8.3.2 Design;362
9.3.3;8.3.3 Materials;363
9.3.4;8.3.4 Integral Hinge Design Calculations;363
9.3.5;8.3.5 Applications with Integral Hinges;368
10;9 Mechanical Fasteners;378
10.1;9.1 Molded Threads and Threads Produced by Machining;379
10.1.1;9.1.1 Screws and Bolts Made of Polymeric Material;379
10.1.2;9.1.2 Injection-Molded, Blow-Molded, and Machined Threads;381
10.2;9.2 Threaded Inserts;381
10.2.1;9.2.1 Encapsulated Threaded Inserts;381
10.2.2;9.2.2 Threaded Inserts Embedded by Ultrasound;381
10.2.3;9.2.3 Press-In Threaded Inserts;382
10.2.4;9.2.4 Expansion Inserts;383
10.2.5;9.2.5 Screw-In Inserts;383
10.2.6;9.2.6 Inserts Made of Polymeric Materials;384
10.2.7;9.2.7 Comparative Evaluation of the Various Inserts;384
10.2.8;9.2.8 Behavior under Dynamic Loads;387
10.3;9.3 Self-Threading Screws;387
10.3.1;9.3.1 Screw Shapes and Geometries;388
10.3.2;9.3.2 Design of the Screw Boss;390
10.3.3;9.3.3 Calculation of Key Variables in a Self-Threading Screw Joint;394
11;10 Ribbed Structures;400
11.1;10.1 Comparison with Other Methods of Reinforcement;400
11.1.1;10.1.1 Increasing the Modulus of Elasticity;400
11.1.2;10.1.2 Increasing Wall Thickness;401
11.1.3;10.1.3 Crimps and Corrugations;402
11.2;10.2 General Considerations in Ribbed Structures;403
11.2.1;10.2.1 Rib Height;403
11.2.2;10.2.2 Rib Position;404
11.2.3;10.2.3 Number of Ribs (Consumption of Material);406
11.2.4;10.2.4 Support;408
11.3;10.3 Design Rules for Injection-Molded Ribs;409
11.3.1;10.3.1 Rib Thickness;409
11.3.2;10.3.2 Cooling Time;410
11.3.3;10.3.3 Injection Direction;411
11.3.4;10.3.4 Rib Intersection Points (Nodes);413
11.4;10.4 Design Rules for Ribs Produced by Gas-Assist Molding Methods;414
11.5;10.5 Design Rules for Blow-Molded Ribs and Corrugations;416
11.5.1;10.5.1 Blow-Molded Corrugations;416
11.5.2;10.5.2 Blow-Molded Ribs;418
11.6;10.6 Design Rules for Compression-Molded Ribs;419
11.6.1;10.6.1 Manual Processing (Hand Lay-Up Process);419
11.6.2;10.6.2 Compression Molding;420
12;11 Gear Wheels;424
12.1;11.1 Calculation of the Tooth and Tooth Face Temperatures in Spur Gears;426
12.1.1;11.1.1 Blok’s Flash Temperature Hypothesis;427
12.1.2;11.1.2 Takanashi Method for Calculating Temperature;427
12.1.3;11.1.3 Hachmann and Strickle Method for Calculating Temperature;429
12.1.4;11.1.4 Comparison of Methods of Calculating Temperature;431
12.1.5;11.1.5 Optimized Temperature Calculation;432
12.2;11.2 Calculation of Load-Bearing Capacity;437
12.2.1;11.2.1 Tooth Damage;438
12.2.2;11.2.2 General Parameters;439
12.2.3;11.2.3 Calculation of the Load-Bearing Capacity of the Tooth Base;440
12.2.4;11.2.4 Calculation of the Load-Bearing Capacity of the Tooth Flank;447
12.2.5;11.2.5 Calculation of Tooth Deformation;453
12.3;11.3 Design;455
12.3.1;11.3.1 Injection Molding;455
12.3.2;11.3.2 Production of Gears by Machining;459
12.3.3;11.3.3 Shaft-Hub Joints;460
13;12 Friction Bearings;472
13.1;12.1 Friction Bearing Damage;474
13.2;12.2 Calculation of Load-Bearing Capacity for Bearings;476
13.2.1;12.2.1 Calculation of Mean Bearing Temperature;476
13.2.2;12.2.2 Calculation of Temperature of Sliding Surface;479
13.2.3;12.2.3 Static Load-Bearing Capacity;479
13.2.4;12.2.4 Dynamic Load-Bearing Capacity;488
13.3;12.3 Bearing Design;491
13.3.1;12.3.1 Bearing Clearance;491
13.3.2;12.3.2 Bearing Wall Thickness;493
13.3.3;12.3.3 Bearing Production;494
13.3.4;12.3.4 Design Examples of Bearings;494
14;13 Wheels and Rollers;498
14.1;13.1 Roller Damage;499
14.2;13.2 Calculation of Load-Bearing Capacity;501
14.2.1;13.2.1 Pressure Parameter as an Approximate Design Limit;501
14.2.2;13.2.2 Deformation of Rollers under Static Load;505
14.2.3;13.2.3 Rollers under Dynamic Load;511
15;Index;522



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.