Esch / Kieffer / Lopez | Asset and Risk Management | Buch | 978-0-471-49144-6 | www.sack.de

Buch, Englisch, 432 Seiten, mit 1 CD-ROM, Format (B × H): 164 mm x 229 mm, Gewicht: 962 g

Esch / Kieffer / Lopez

Asset and Risk Management

Risk Oriented Finance
1. Auflage 2005
ISBN: 978-0-471-49144-6
Verlag: Wiley

Risk Oriented Finance

Buch, Englisch, 432 Seiten, mit 1 CD-ROM, Format (B × H): 164 mm x 229 mm, Gewicht: 962 g

ISBN: 978-0-471-49144-6
Verlag: Wiley


Dieses Buch bietet einen neuen Ansatz für die Anwendung der Value at Risk-Methode (VaR) beim Aktiv-Passiv-Management. Das Aktiv-Passiv-Management beschäftigt sich mit der Gewährleistung der laufzeitkongruenten Deckung von Aktiv- und Passivpositionen und ist daher unverzichtbar für Transaktionen von Finanzinstitutionen. Der Autor erläutert hier das Risikomanagement von Finanzinstitutionen im Aktiv-Passiv-Bereich, und zwar insbesondere für Versicherungsunternehmen, offene Investmentfonds, Pensionskassen, Hedge Funds usw. Nach einer detaillierten Einführung in VaR, konzentriert er sich vorrangig auf die Anwendung dieser Methode auf das Aktiv-Passiv-Management und das Portfolio Management. Die Begleit-CD enthält Software und Beispiele aus dem Buch, z.B. zur Varianz/Covarianz Matrix und zu Monte Carlo Simulationen sowie Beispiele zur Optimierung des Aktiv-Management, zu Differenzpositionen in der Aktiv- und Passivsteuerung und zu VaR-Schätzungen.

Esch / Kieffer / Lopez Asset and Risk Management jetzt bestellen!

Weitere Infos & Material


Collaborators xiii

Foreword by Philippe Jorion xv

Acknowledgements xvii

Introduction xix

Areas covered xix

Who is this book for? xxi

Part I The Massive Changes in the World of Finance 1

Introduction 2

1 The Regulatory Context 3

1.1 Precautionary surveillance 3

1.2 The Basle Committee 3

1.2.1 General information 3

1.2.2 Basle II and the philosophy of operational risk 5

1.3 Accounting standards 9

1.3.1 Standard-setting organisations 9

1.3.2 The IASB 9

2 Changes in Financial Risk Management 11

2.1 Definitions 11

2.1.1 Typology of risks 11

2.1.2 Risk management methodology 19

2.2 Changes in financial risk management 21

2.2.1 Towards an integrated risk management 21

2.2.2 The ‘cost’ of risk management 25

2.3 A new risk-return world 26

2.3.1 Towards a minimisation of risk for an anticipated return 26

2.3.2 Theoretical formalisation 26

Part II Evaluating Financial Assets 29

Introduction 30

3 Equities 35

3.1 The basics 35

3.1.1 Return and risk 35

3.1.2 Market efficiency 44

3.1.3 Equity valuation models 48

3.2 Portfolio diversification and management 51

3.2.1 Principles of diversification 51

3.2.2 Diversification and portfolio size 55

3.2.3 Markowitz model and critical line algorithm 56

3.2.4 Sharpe’s simple index model 69

3.2.5 Model with risk-free security 75

3.2.6 The Elton, Gruber and Padberg method of portfolio management 79

3.2.7 Utility theory and optimal portfolio selection 85

3.2.8 The market model 91

3.3 Model of financial asset equilibrium and applications 93

3.3.1 Capital asset pricing model 93

3.3.2 Arbitrage pricing theory 97

3.3.3 Performance evaluation 99

3.3.4 Equity portfolio management strategies 103

3.4 Equity dynamic models 108

3.4.1 Deterministic models 108

3.4.2 Stochastic models 109

4 Bonds 115

4.1 Characteristics and valuation 115

4.1.1 Definitions 115

4.1.2 Return on bonds 116

4.1.3 Valuing a bond 119

4.2 Bonds and financial risk 119

4.2.1 Sources of risk 119

4.2.2 Duration 121

4.2.3 Convexity 127

4.3 Deterministic structure of interest rates 129

4.3.1 Yield curves 129

4.3.2 Static interest rate structure 130

4.3.3 Dynamic interest rate structure 132

4.3.4 Deterministic model and stochastic model 134

4.4 Bond portfolio management strategies 135

4.4.1 Passive strategy: immunisation 135

4.4.2 Active strategy 137

4.5 Stochastic bond dynamic models 138

4.5.1 Arbitrage models with one state variable 139

4.5.2 The Vasicek model 142

4.5.3 The Cox, Ingersoll and Ross model 145

4.5.4 Stochastic duration 147

5 Options 149

5.1 Definitions 149

5.1.1 Characteristics 149

5.1.2 Use 150

5.2 Value of an option 153

5.2.1 Intrinsic value and time value 153

5.2.2 Volatility 154

5.2.3 Sensitivity parameters 155

5.2.4 General properties 157

5.3 Valuation models 160

5.3.1 Binomial model for equity options 162

5.3.2 Black and Scholes model for equity options 168

5.3.3 Other models of valuation 174

5.4 Strategies on options 175

5.4.1 Simple strategies 175

5.4.2 More complex strategies 175

Part III General Theory of VaR 179

Introduction 180

6 Theory of VaR 181

6.1 The concept of ‘risk per share’ 181

6.1.1 Standard measurement of risk linked to financial products 181

6.1.2 Problems with these approaches to risk 181

6.1.3 Generalising the concept of ‘risk’ 184

6.2 VaR for a single asset 185

6.2.1 Value at Risk 185

6.2.2 Case of a normal distribution 188

6.3 VaR for a portfolio 190

6.3.1 General results 190

6.3.2 Components of the VaR of a portfolio 193

6.3.3 Incremental VaR 195

7 VaR Estimation Techniques 199

7.1 General questions in estimating VaR 199

7.1.1 The problem of estimation 199

7.1.2 Typology of estimation methods 200

7.2 Estimated variance–covariance matrix method 202

7.2.1 Identifying cash flows in financial assets 203

7.2.2 Mapping cashflows with standard maturity dates 205

7.2.3 Calculating VaR 209

7.3 Monte Carlo simulation 216

7.3.1 The Monte Carlo method and probability theory 216

7.3.2 Estimation method 218

7.4 Historical simulation 224

7.4.1 Basic methodology 224

7.4.2 The contribution of extreme value theory 230

7.5 Advantages and drawbacks 234

7.5.1 The theoretical viewpoint 235

7.5.2 The practical viewpoint 238

7.5.3 Synthesis 241

8 Setting Up a VaR Methodology 243

8.1 Putting together the database 243

8.1.1 Which data should be chosen? 243

8.1.2 The data in the example 244

8.2 Calculations 244

8.2.1 Treasury portfolio case 244

8.2.2 Bond portfolio case 250

8.3 The normality hypothesis 252

Part IV From Risk Management to Asset Management 255

Introduction 256

9 Portfolio Risk Management 257

9.1 General principles 257

9.2 Portfolio risk management method 257

9.2.1 Investment strategy 258

9.2.2 Risk framework 258

10 Optimising the Global Portfolio via VaR 265

10.1 Taking account of VaR in Sharpe’s simple index method 266

10.1.1 The problem of minimisation 266

10.1.2 Adapting the critical line algorithm to VaR 267

10.1.3 Comparison of the two methods 269

10.2 Taking account of VaR in the EGP method 269

10.2.1 Maximising the risk premium 269

10.2.2 Adapting the EGP method algorithm to VaR 270

10.2.3 Comparison of the two methods 271

10.2.4 Conclusion 272

10.3 Optimising a global portfolio via VaR 274

10.3.1 Generalisation of the asset model 275

10.3.2 Construction of an optimal global portfolio 277

10.3.3 Method of optimisation of global portfolio 278

11 Institutional Management: APT Applied to Investment Funds 285

11.1 Absolute global risk 285

11.2 Relative global risk/tracking error 285

11.3 Relative fund risk vs. benchmark abacus 287

11.4 Allocation of systematic risk 288

11.4.1 Independent allocation 288

11.4.2 Joint allocation: ‘value’ and ‘growth’ example 289

11.5 Allocation of performance level 289

11.6 Gross performance level and risk withdrawal 290

11.7 Analysis of style 291

Part V From Risk Management to Asset and Liability Management 293

Introduction 294

12 Techniques for Measuring Structural Risks in Balance Sheets 295

12.1 Tools for structural risk analysis in asset and liability management 295

12.1.1 Gap or liquidity risk 296

12.1.2 Rate mismatches 297

12.1.3 Net present value (NPV) of equity funds and sensitivity 298

12.1.4 Duration of equity funds 299

12.2 Simulations 300

12.3 Using VaR in ALM 301

12.4 Repricing schedules (modelling of contracts with floating rates) 301

12.4.1 The conventions method 301

12.4.2 The theoretical approach to the interest rate risk on floating rate products, through the net current value 302

12.4.3 The behavioural study of rate revisions 303

12.5 Replicating portfolios 311

12.5.1 Presentation of replicating portfolios 312

12.5.2 Replicating portfolios constructed according to convention 313

12.5.3 The contract-by-contract replicating portfolio 314

12.5.4 Replicating portfolios with the optimal value method 316

Appendices 323

Appendix 1 Mathematical Concepts 325

1.1 Functions of one variable 325

1.1.1 Derivatives 325

1.1.2 Taylor’s formula 327

1.1.3 Geometric series 328

1.2 Functions of several variables 329

1.2.1 Partial derivatives 329

1.2.2 Taylor’s formula 331

1.3 Matrix calculus 332

1.3.1 Definitions 332

1.3.2 Quadratic forms 334

Appendix 2 Probabilistic Concepts 339

2.1 Random variables 339

2.1.1 Random variables and probability law 339

2.1.2 Typical values of random variables 343

2.2 Theoretical distributions 347

2.2.1 Normal distribution and associated ones 347

2.2.2 Other theoretical distributions 350

2.3 Stochastic processes 353

2.3.1 General considerations 353

2.3.2 Particular stochastic processes 354

2.3.3 Stochastic differential equations 356

Appendix 3 Statistical Concepts 359

3.1 Inferential statistics 359

3.1.1 Sampling 359

3.1.2 Two problems of inferential statistics 360

3.2 Regressions 362

3.2.1 Simple regression 362

3.2.2 Multiple regression 363

3.2.3 Nonlinear regression 364

Appendix 4 Extreme Value Theory 365

4.1 Exact result 365

4.2 Asymptotic results 365

4.2.1 Extreme value theorem 365

4.2.2 Attraction domains 366

4.2.3 Generalisation 367

Appendix 5 Canonical Correlations 369

5.1 Geometric presentation of the method 369

5.2 Search for canonical characters 369

Appendix 6 Algebraic Presentation of Logistic Regression 371

Appendix 7 Time Series Models: ARCH-GARCH and EGARCH 373

7.1 ARCH-GARCH models 373

7.2 EGARCH models 373

Appendix 8 Numerical Methods for Solving Nonlinear Equations 375

8.1 General principles for iterative methods 375

8.1.1 Convergence 375

8.1.2 Order of convergence 376

8.1.3 Stop criteria 376

8.2 Principal methods 377

8.2.1 First order methods 377

8.2.2 Newton–Raphson method 379

8.2.3 Bisection method 380

8.3 Nonlinear equation systems 380

8.3.1 General theory of n-dimensional iteration 381

8.3.2 Principal methods 381

Bibliography 383

Index 389


Louis Esch Doctor of Mathematical Science at the University of Liège, and a researcher there in the Department of Probability Theory and Mathematical Statistics. He currently teaches quantitative methods and financial modelling at the School of Higher Business Studies in Liège, where he is science manager for post-graduate education in Finance and Insurance and President of the "Quantitative Management Methods" unit. He is also conference master at the University of Liège.

Robert Kieffer Treasurer at Banque Degroof Luxembourg SA, honorary board member of ACI Luxembourg and Course Manager at the Luxembourg Institute of Banking Training.

Thierry Lopez Certificated Business Engineer at the School of Higher Business Studies in Liège, and manager of the Risk Management Group at Kredietbank SA in Luxembourg, Conference Master at the University of Liège, Professor of Honour at the School of Higher Business Studies in Liège, Course Manager at the Luxembourg Institute of Banking Training and at the Luxembourg Risk Management Finance Technology Transfer Agency, Honorary President and Vice-President of PRIM (Luxembourg Association of Risk Management Professionals).

Assisted by: Christian Berbé, Pascal Damel, Michel Debay, Jean-François Hannosset.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.