Faddeev / Khalfin / Komarov | V.A. Fock - Selected Works | E-Book | sack.de
E-Book

E-Book, Englisch, 584 Seiten

Faddeev / Khalfin / Komarov V.A. Fock - Selected Works

Quantum Mechanics and Quantum Field Theory
1. Auflage 2004
ISBN: 978-1-134-42200-5
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Quantum Mechanics and Quantum Field Theory

E-Book, Englisch, 584 Seiten

ISBN: 978-1-134-42200-5
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



In the period between the birth of quantum mechanics and the late 1950s, V.A. Fock wrote papers that are now deemed classics. In his works on theoretical physics, Fock not only skillfully applied advanced analytical and algebraic methods, but also systematically created new mathematical tools when existing approaches proved insufficient. This collection of Fock's papers published in various sources between 1923 and 1959 in Russian, German, French, and English. These papers explore some of the fundamental notions of theoretical quantum physics, such as the Hartree-Fock method, Fock space, the Fock symmetry of the hydrogen atom, and the Fock functional method. They also present Fock's views on the interpretation of quantum mechanics and the fundamental significance of approximate methods in theoretical physics. V.A. Fock was a key contributor to one of the most exciting periods of development in 20th-century physics, and this book conveys the essence of that time. The seminal works presented in this book are a helpful reference for any student or researcher in theoretical and mathematical physics, especially those specializing in quantum mechanics and quantum field theory.

Faddeev / Khalfin / Komarov V.A. Fock - Selected Works jetzt bestellen!

Zielgruppe


Researchers and graduate students in theoretical and applied physics; mathematical physicists; science historians

Weitere Infos & Material


On Rayleigh's Pendulum
On Schrodinger's Wave Mechanics
On the Invariant form of the Wave Equation and of the Equations of Motion for a Charged Massive Point
A Comment on Quantization of the Harmonic Oscillator in a Magnetic Field
On the Relation Between the Integrals of the Quantum Mechanical Equations of Motion and the Schrödinger Wave Equation
Generalization and Solution of the Dirac Statistical Equation
Proof of the Adiabatic Theorem
On “Improper” Functions in Quantum Mechanics
On the Notion of Velocity in the Dirac Theory of the Electron
On the Dirac Equations in General Relativity
Dirac Wave Equation and Riemann Geometry
A Comment on the Virial Relation
An Approximate Method for Solving the Quantum Many-body Problem
Application of the Generalized Hartree Method to the Sodium Atom
New Uncertainty Properties of the Electromagnetic Field
The Mechanics of Photons
A Comment on the Virial Relation in Classical Mechanics
Configuration Space and Second Quantization
On Dirac's Quantum Electrodynamics
On Quantization of Electro-magnetic waves and Interaction of Charges in Dirac Theory
On Quantum Electrodynamics
On the Theory of Positrons
On Quantum Exchange Energy
On the Numerical Solution of Generalized Equations of the Self-Consistent Field
An Approximate Representation of the Wave Functions of Penetrating Orbits
On Quantum Electrodynamics
Hydrogen Atom and Non-Euclidean Geometry
Extremal Problems in Quantum Theory
The Fundamental Significance of Approximate Methods in Theoretical Physics
The Method of Functionals in Quantum Electrodynamics
Proper Time in Classical and Quantum Mechanics
Incomplete Separation of Variables for Divalent Atoms
On the Wave Functions of Many-Electron Systems
On the Representation of an Arbitrary Function by an Integral Involving Legendre's Function with a Complex Index
On the Uncertainty Relation Between Time and Energy
Application of Two-electron Functions in the Theory of Chemical Bonds
On the Interpretation of Quantum Mechanics
On the Canonical Transformation in Classical and Quantum Mechanics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.