Faul | A Concise Introduction to Machine Learning | Buch | 978-0-8153-8420-5 | sack.de

Buch, Englisch, 334 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 669 g

Reihe: Chapman & Hall/CRC Machine Learning & Pattern Recognition

Faul

A Concise Introduction to Machine Learning


1. Auflage 2019
ISBN: 978-0-8153-8420-5
Verlag: Chapman and Hall/CRC

Buch, Englisch, 334 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 669 g

Reihe: Chapman & Hall/CRC Machine Learning & Pattern Recognition

ISBN: 978-0-8153-8420-5
Verlag: Chapman and Hall/CRC


The emphasis of the book is on the question of Why – only if why an algorithm is successful is understood, can it be properly applied, and the results trusted. Algorithms are often taught side by side without showing the similarities and differences between them. This book addresses the commonalities, and aims to give a thorough and in-depth treatment and develop intuition, while remaining concise.

This useful reference should be an essential on the bookshelves of anyone employing machine learning techniques.

The author's webpage for the book can be accessed here.

Faul A Concise Introduction to Machine Learning jetzt bestellen!

Zielgruppe


Academic


Autoren/Hrsg.


Weitere Infos & Material


Introduction. Probability Theory. Sampling. Linear Classification. Non-Linear Classification. Dimensionality Reduction. Regression. Feature Learning.


A.C. Faul was a Teaching Associate, Fellow and Director of Studies in Mathematics at Selwyn College, University of Cambridge. She came to Cambridge after studying two years in Germany. She did Part II and Part III Mathematics at Churchill College, Cambridge. Since these are only two years, and three years are necessary for a first degree, she does not hold one. However, this was followed by a PhD on the Faul-Powell Algorithm for Radial Basis Function Interpolation under the supervision of Professor Mike Powell. She then worked on the Relevance Vector Machine with Mike Tipping at Microsoft Research Cambridge. Ten years in industry followed where she worked on various algorithms on mobile phone networks, image processing and data visualization. Current projects are on machine learning techniques. In teaching, she enjoys to bring out the underlying, connecting principles of algorithms, which is the emphasis of a book on Numerical Analysis she has written.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.