Buch, Englisch, 334 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 669 g
Reihe: Chapman & Hall/CRC Machine Learning & Pattern Recognition
Buch, Englisch, 334 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 669 g
Reihe: Chapman & Hall/CRC Machine Learning & Pattern Recognition
ISBN: 978-0-8153-8420-5
Verlag: Chapman and Hall/CRC
The emphasis of the book is on the question of Why – only if why an algorithm is successful is understood, can it be properly applied, and the results trusted. Algorithms are often taught side by side without showing the similarities and differences between them. This book addresses the commonalities, and aims to give a thorough and in-depth treatment and develop intuition, while remaining concise.
This useful reference should be an essential on the bookshelves of anyone employing machine learning techniques.
The author's webpage for the book can be accessed here.
Zielgruppe
Academic
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
Weitere Infos & Material
Introduction. Probability Theory. Sampling. Linear Classification. Non-Linear Classification. Dimensionality Reduction. Regression. Feature Learning.