Faul | A Concise Introduction to Machine Learning | Buch | 978-1-032-87817-1 | sack.de

Buch, Englisch, 352 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 810 g

Reihe: Chapman & Hall/CRC Machine Learning & Pattern Recognition

Faul

A Concise Introduction to Machine Learning


2. Auflage 2025
ISBN: 978-1-032-87817-1
Verlag: Taylor & Francis Ltd

Buch, Englisch, 352 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 810 g

Reihe: Chapman & Hall/CRC Machine Learning & Pattern Recognition

ISBN: 978-1-032-87817-1
Verlag: Taylor & Francis Ltd


A Concise Introduction to Machine Learning uses mathematics as the common language to explain a variety of machine learning concepts from basic principles and illustrates every concept using examples in both Python and MATLAB®, which are available on GitHub and can be run from there in Binder in a web browser. Each chapter concludes with exercises to explore the content.

The emphasis of the book is on the question of Why—only if “why” an algorithm is successful is understood, can it be properly applied and the results trusted. Standard techniques are treated rigorously, including an introduction to the necessary probability theory. This book addresses the commonalities of methods, aims to give a thorough and in-depth treatment and develop intuition for the inner workings of algorithms, while remaining concise.

This useful reference should be essential on the bookshelf of anyone employing machine learning techniques, since it is born out of strong experience in university teaching and research on algorithms, while remaining approachable and readable.

Faul A Concise Introduction to Machine Learning jetzt bestellen!

Zielgruppe


Professional Practice & Development and Undergraduate Advanced


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1. Introduction

Chapter 2. Probability Theory

Chapter 3. Sampling

Chapter 4. Linear Classification

Chapter 5. Non-Linear Classification

Chapter 6. Dimensionality Reduction

Chapter 7. Regression

Chapter 8. Feature Learning

Appendix A. Matrix Formulae

Index


A.C. Faul is a passionate educator believing that only with deep understanding of the underlying connecting principles of algorithms can progress be made. She obtained an MASt and PhD in Mathematics at the University of Cambridge. She has worked on a variety of algorithms both in industry and academic settings.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.