Fill / Maciaszek / van Sinderen | Software Technologies | Buch | 978-3-031-37230-8 | sack.de

Buch, Englisch, 231 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 376 g

Reihe: Communications in Computer and Information Science

Fill / Maciaszek / van Sinderen

Software Technologies

17th International Conference, ICSOFT 2022, Lisbon, Portugal, July 11-13, 2022, Revised Selected Papers
1. Auflage 2023
ISBN: 978-3-031-37230-8
Verlag: Springer Nature Switzerland

17th International Conference, ICSOFT 2022, Lisbon, Portugal, July 11-13, 2022, Revised Selected Papers

Buch, Englisch, 231 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 376 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-37230-8
Verlag: Springer Nature Switzerland


This book includes extended and revised versions of a set of selected papers from the 17th International Conference on Software Technologies, ICSOFT 2022, held in Lisbon, Portugal, during July 11–13, 2022. 

The 10 full papers included in this book were carefully reviewed and selected from 102 submissions. They were organized in topical sections as follows: tool assisted empirical approach to reusability models assessment; functional programming; three forms of mutant subsumption: basic, strict and broad; and on the efficiency of building large collections of software: modeling, algorithms, and experimental results.
Fill / Maciaszek / van Sinderen Software Technologies jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Tool Assisted Empirical Approach to Reusability Models Assessment.- Microservices Deployment on a Multi-platform Ecosystem: A Contract-based Approach.- A Decision Model based on an Optimized Choquet Integral: Multifactor Prediction and Intelligent Agriculture Application.-A New Simulation Tool for Sensor Networks based on an Energy-efficient and Fault-tolerant Methodology.- Adapting Cyber-Risk Assessment for the Planning of Cyber-Physical Smart Grids based on Industrial Needs.- Three Forms of Mutant Subsumption: Basic, Strict and Broad.- On the Efficiency of Building Large Collections of Software: Modeling, Algorithms, and Experimental Results.- An AST-based Code Change Representation and Its Performance in Just-in-time Vulnerability Prediction.- Towards Extracting Reusable and Maintainable Code Snippets.- A deep learning architecture based on advanced textual language models for detecting disease through its symptoms associated with a reinforcement learning algorithm.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.