Forrester / Byun | Progress on the Study of the Ginibre Ensembles | Buch | 978-981-97-5172-3 | sack.de

Buch, Englisch, Band 3, 221 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 524 g

Reihe: KIAS Springer Series in Mathematics

Forrester / Byun

Progress on the Study of the Ginibre Ensembles


2025
ISBN: 978-981-97-5172-3
Verlag: Springer Nature Singapore

Buch, Englisch, Band 3, 221 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 524 g

Reihe: KIAS Springer Series in Mathematics

ISBN: 978-981-97-5172-3
Verlag: Springer Nature Singapore


This open access book focuses on the Ginibre ensembles that are non-Hermitian random matrices proposed by Ginibre in 1965. Since that time, they have enjoyed prominence within random matrix theory, featuring, for example, the first book on the subject written by Mehta in 1967. Their status has been consolidated and extended over the following years, as more applications have come to light, and the theory has developed to greater depths. This book sets about detailing much of this progress. Themes covered include eigenvalue PDFs and correlation functions, fluctuation formulas, sum rules and asymptotic behaviors, normal matrix models, and applications to quantum many-body problems and quantum chaos. There is a distinction between the Ginibre ensemble with complex entries (GinUE) and those with real or quaternion entries (GinOE and GinSE, respectively).
First, the eigenvalues of GinUE form a determinantal point process, while those of GinOE and GinSE have the more complicated structure of a Pfaffian point process. Eigenvalues on the real line in the case of GinOE also provide another distinction. On the other hand, the increased complexity provides new opportunities for research. This is demonstrated in our presentation, which details several applications and contains not previously published theoretical advances. The areas of application are diverse, with examples being diffusion processes and persistence in statistical physics and equilibria counting for a system of random nonlinear differential equations in the study of the stability of complex systems.

Forrester / Byun Progress on the Study of the Ginibre Ensembles jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction.- Eigenvalue PDFs and Correlations.- Fluctuation Formulas.- Coulomb Gas Model, Sum Rules and Asymptotic Behaviours.- Normal Matrix Models.- Further Theory and Applications.- Eigenvalue Statistics for GinOE and Elliptic GinOE.- Analogues of GinUE Statistical Properties for GinOE.- Further Extensions to GinOE.- Statistical Properties of GinSE and Elliptic GinSE.- Further Extensions to GinSE.


Sung-Soo Byun is Assistant Professor in the Department of Mathematical Sciences at Seoul National University. 
Peter J. Forrester is Professor in School of Mathematics and Statistics at The University of Melbourne.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.