Freud | Orthogonale Polynome | E-Book | sack.de
E-Book

E-Book, Deutsch, 296 Seiten, eBook

Reihe: Mathematische Reihe

Freud Orthogonale Polynome


1969
ISBN: 978-3-0348-7169-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Deutsch, 296 Seiten, eBook

Reihe: Mathematische Reihe

ISBN: 978-3-0348-7169-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Freud Orthogonale Polynome jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Erläuterung der häufig verwendeten Bezeichnungen.- I Grundlegende Eigenschaften der Orthogonalpolynome.- § I. 1. Definition der Orthogonalpolynomsysteme.- § I. 2. Rekursionsformel. Vorläufiges über die Lage der Nullstellen.- § I. 3. Die Gauss-Jacobische Quadraturformel.- § I. 4. Folgerungen aus der Quadraturformel.- § I. 5. Die Markoff-Stieltjessche Ungleichung.- § I. 6. Die Tschebyscheffschen und die Legendreschen Polynome.- § I. 7. Einige elementare Abschätzungen der Orthogonalpolynome.- § I. 8. Die Jacobischen Polynome.- Aufgaben und Bemerkungen zu Kapitel I.- II Elemente der Theorie des Hamburger-Stieltjesschen Momentenproblems.- § II. 1.Über die Lösbarkeit des Momentenproblems.- § II. 2. Bedingungen für die Eindeutigkeit der Lösung.- § II. 3. Zusammenhang zwischen Eindeutigkeit des Momentenproblems und Approximation durch Polynome.- § II. 4. Die Vollständigkeit des Systems der Orthogonalpolynome in Ld?2.- § II. 5. Ein Eindeutigkeitskriterium.- Aufgaben und Bemerkungen zu Kapitel II.- III Quadraturverfahren und Interpolation über die Nullstellen der Orthogonalpolynome.- § III. 1. Über die Konvergenz von Quadraturverfahren.- § III. 2. Konvergenz der Interpolationspolynome im quadratischen Mittel.- § III. 3. Abschätzungen der Christoffelschen Zahlen.- § III. 4. Eine Abschätzung der Konvergenzgeschwindigkeit von Quadratur-verfahren.- § III. 5. Abschätzung des Abstandes zweier benachbarter Nullstellen von ?n(x, ?).- § III. 6. Punktweise und gleichmäßige Konvergenz des Interpolationsverfahrens.- § III. 7. Verhalten der Orthogonalpolynome auf der komplexen Ebene.- § III. 8. Interpolation analytischer Funktionen.- § III. 9. Die Verteilungsfunktion der Nullstellen.- Aufgaben und Bemerkungen zu Kapitel III.- IV Konvergenztheorie derOrthogonalpolynomreihen.- § IV. 1. Grundbegriffe. Absolute Konvergenz der Orthogonalpolynomreihe.- § IV. 2. Die Lebesgueschen Punkte der Funktionen aus Ld?p.- § IV. 3. Starke (C,1)-Summierbarkeit der Orthogonalpolynomreihe.- § IV. 4. Approximationseigenschaften der (C,1)-Summen.- § IV. 5. Konvergenzkriterien.- § IV. 6. Bemerkungen über »Konvergenz fast überall«.- Aufgaben und Bemerkungen zu Kapitel IV.- V Die Theorie.- § V. 1. Die Orthogonalpolynome auf dem Einheitskreise.- § V. 2. Die Szegösche Extremumaufgabe.- § V. 3. Die Szegösche Funktion und die Funktionenklassen Hd?2.- § V. 4. Asymptotik der Orthogonalpolynome (Erster Teil).- § V. 5. Asymptotik der Orthogonalpolynome (Fortsetzung). Die Klasse Lip (1/2,2). Lokalisation der Gültigkeit der Asymptotik.- § V. 6. Asymptotische Formel für die Christoffelschen Zahlen.- § V. 7. Ergänzungen zu der Konvergenztheorie der Orthogonalpolynomreihen.- § V. 8. Asymptotischer Wert des Abstandes benachbarter Nullstellen.- Aufgaben und Bemerkungen zu Kapitel V.- Nachwort über offene Probleme.- Bibliographie.- Namenverzeichnis.- Tabelle III. A. Quadraturverfahren, Interpolation.- Tabelle V. B. Asymptotische Formel.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.