Buch, Englisch, 628 Seiten, Format (B × H): 216 mm x 276 mm, Gewicht: 1950 g
Buch, Englisch, 628 Seiten, Format (B × H): 216 mm x 276 mm, Gewicht: 1950 g
ISBN: 978-0-12-801895-8
Verlag: William Andrew Publishing
Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory.
Zielgruppe
<p>Graduate and post graduate students in neuroscience and psychology looking for an introduction to mathematical methods in neuroscience; researchers in neuroscience and psychology looking for a quick reference for mathematical methods; and students in applied mathematics, physical sciences, engineering who want an introduction to neuroscience in a mathematical context.</p>
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Klinische und Innere Medizin Neurologie, Klinische Neurowissenschaft
- Interdisziplinäres Wissenschaften Wissenschaften Interdisziplinär Neurowissenschaften, Kognitionswissenschaft
- Naturwissenschaften Biowissenschaften Biowissenschaften Neurobiologie, Verhaltensbiologie
Weitere Infos & Material
1. Introduction2. The Passive Isopotential Cell3. Differential Equations4. The Active Isopotential Cell5. The Quasi-Active Isopotential Cell6. The Passive Cable7. Fourier Series and Transforms8. The Passive Dendritic Tree9. The Active Dendritic Tree10. Extracellular Potential11. Reduced Single Neuron Models12. Probability and Random Variables13. Synaptic Transmission and Quantal Release14. Neuronal Calcium SignalingNeuronal Calcium Signaling15. Neurovascular Coupling, the BOLD Signal and MRI16. The Singular Value Decomposition and ApplicationsThe Singular Value Decomposition and Applications17. Quantification of Spike Train Variability18. Stochastic Processes19. Membrane NoiseMembrane Noise20. Power and Cross-Spectra21. Natural Light Signals and Phototransduction22. Firing Rate Codes and Early Vision23. Models of Simple and Complex Cells24. Models of Motion Detection25. Stochastic Estimation Theory26. Reverse-Correlation and Spike Train Decoding27. Signal Detection Theory28. Relating Neuronal Responses and Psychophysics29. Population CodesPopulation Codes30. Neuronal Networks31. Solutions to Exercises