Gan | Data Clustering in C++ | E-Book | sack.de
E-Book

Gan Data Clustering in C++

An Object-Oriented Approach
Erscheinungsjahr 2011
ISBN: 978-1-4398-6224-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

An Object-Oriented Approach

E-Book, Englisch, 520 Seiten

Reihe: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series

ISBN: 978-1-4398-6224-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Data clustering is a highly interdisciplinary field, the goal of which is to divide a set of objects into homogeneous groups such that objects in the same group are similar and objects in different groups are quite distinct. Thousands of theoretical papers and a number of books on data clustering have been published over the past 50 years. However, few books exist to teach people how to implement data clustering algorithms. This book was written for anyone who wants to implement or improve their data clustering algorithms.
Using object-oriented design and programming techniques, Data Clustering in C++ exploits the commonalities of all data clustering algorithms to create a flexible set of reusable classes that simplifies the implementation of any data clustering algorithm. Readers can follow the development of the base data clustering classes and several popular data clustering algorithms. Additional topics such as data pre-processing, data visualization, cluster visualization, and cluster interpretation are briefly covered.

This book is divided into three parts--

- Data Clustering and C++ Preliminaries: A review of basic concepts of data clustering, the unified modeling language, object-oriented programming in C++, and design patterns

- A C++ Data Clustering Framework: The development of data clustering base classes

- Data Clustering Algorithms: The implementation of several popular data clustering algorithms

A key to learning a clustering algorithm is to implement and experiment the clustering algorithm. Complete listings of classes, examples, unit test cases, and GNU configuration files are included in the appendices of this book as well as in the CD-ROM of the book. The only requirements to compile the code are a modern C++ compiler and the Boost C++ libraries.

Gan Data Clustering in C++ jetzt bestellen!

Zielgruppe


Researchers and graduate students in statistics, computer science, and related areas.


Autoren/Hrsg.


Weitere Infos & Material


Dedication
Preface
List of Tables
List of Figures

I Data Clustering and C++ Preliminaries
Introduction to Data Clustering
Data Clustering
Data Types
Dissimilarity and SimilarityMeasures
Hierarchical Clustering Algorithms
Partitional Clustering Algorithms
Cluster Validity
Clustering Applications
Literature of Clustering Algorithms
Summary
The Unified Modeling Language
PackageDiagrams
Class Diagrams
Use Case Diagrams
Activity Diagrams
Notes
Summary
Object-Oriented Programming and C++
Object-Oriented Programming
The C++ Programming Language
Encapsulation
Inheritance
Polymorphism
Exception Handling
Summary
Design Patterns
Singleton
Composite
Prototype
Strategy
TemplateMethod
Visitor
Summary
C++ Libraries and Tools
The Standard Template Library
Boost C++ Libraries
GNU Build System
Cygwin
Summary

II A C++ Data Clustering Framework
The Clustering Library
Directory Structure and Filenames
Specification Files
Macros and typedef Declarations
Error Handling
Unit Testing
Compilation and Installation
Summary
Datasets
Attributes
Records
Datasets
A Dataset Example
Summary
Clusters
Clusters
Partitional Clustering
Hierarchical Clustering
Summary
Dissimilarity Measures
The Distance Base Class
Minkowski Distance
Euclidean Distance
SimpleMatching Distance
Mixed Distance
Mahalanobis Distance
Summary
Clustering Algorithms
Arguments
Results
Algorithms
A Dummy Clustering Algorithm
Summary
Utility Classes
The Container Class
The Double-keyMap Class
The Dataset Adapters
The Node Visitors
The Dendrogram Class
The DendrogramVisitor
Summary

III Data Clustering Algorithms
Agglomerative Hierarchical Algorithms
Description of the Algorithm
Implementation
Examples
Summary
DIANA
Description of the Algorithm
Implementation
Examples
Summary
The k-means Algorithm
Description of the Algorithm
Implementation
Examples
Summary
The c-means Algorithm
Description of the Algorithm
Implementaion
Examples
Summary
The k-prototypes Algorithm
Description of the Algorithm
Implementation
Examples
Summary
The Genetic k-modes Algorithm
Description of the Algorithm
Implementation
Examples
Summary
The FSC Algorithm
Description of the Algorithm
Implementation
Examples
Summary
The Gaussian Mixture Algorithm
Description of the Algorithm
Implementation
Examples
Summary
A Parallel k-means Algorithm
Message Passing Interface
Description of the Algorithm
Implementation
Examples
Summary

A Exercises and Projects
B Listings
C Software
Bibliography
Author Index
Subject Index


Guojun Gan, Manulife Financial, Toronto, Canada



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.