Gao / Wang / Gu | Collaborative Computing: Networking, Applications and Worksharing | Buch | 978-3-030-67539-4 | sack.de

Buch, Englisch, Band 350, 578 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 890 g

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

Gao / Wang / Gu

Collaborative Computing: Networking, Applications and Worksharing

16th EAI International Conference, CollaborateCom 2020, Shanghai, China, October 16-18, 2020, Proceedings, Part II
1. Auflage 2021
ISBN: 978-3-030-67539-4
Verlag: Springer International Publishing

16th EAI International Conference, CollaborateCom 2020, Shanghai, China, October 16-18, 2020, Proceedings, Part II

Buch, Englisch, Band 350, 578 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 890 g

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

ISBN: 978-3-030-67539-4
Verlag: Springer International Publishing


This two-volume set constitutes the refereed proceedings of the 16th International Conference on Collaborative Computing: Networking, Applications, and Worksharing, CollaborateCom 2020, held in Shanghai, China, in October 2020.

The 61 full papers and 16 short papers presented were carefully reviewed and selected from 211 submissions. The papers reflect the conference sessions as follows: Collaborative Applications for Network and E-Commerce; Optimization for Collaborate System; Cloud and Edge Computing; Artificial Intelligence; AI Application and Optimization; Classification and Recommendation; Internet of Things; Collaborative Robotics and Autonomous Systems; Smart Transportation.

Gao / Wang / Gu Collaborative Computing: Networking, Applications and Worksharing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Artificial Intelligence.- AI Application and Optimization.- Classification and Recommendation.- Internet of Things.- Collaborative Robotics and Autonomous Systems.- Smart Transportation.- Self-organised Flocking with Simulated Homogeneous Robotic Swarm.- Investigation of Cue-based Aggregation Behaviour in Complex Environments.- Towards Efficient and Privacy-Preserving Service QoS.- Prediction with Federated Learning.- A Reinforcement Learning based Approach to Identify Resource Bottlenecks for Multiple Services Interactions in Cloud Computing Environments.- Differentially Private Location Protection with Staircase Mechanism under Temporal Correlations.- Resource Management.- Mobile Edge Server Placement Based on Bionic Swarm Intelligent Optimization Algorithm.- A MOEAD-based Approach to Solving the Staff Scheduling Problem.- A deep reinforcement learning based resource autonomic provisioning approach for cloud services.- End-to-end QoS Aggregation and Container Allocation for Complex Microservice Flows.- A DQN-based Approach for Online Service Placement in Mobile Edge Computing.- A Hybrid Collaborative Virtual Environment with Heterogeneous Representations for Architectural Planning.- Smart Transportation.- T2I-CycleGAN: A CycleGAN for Maritime Road Network Extraction from Crowdsourcing Spatio-Temporal AIS Trajectory Data.- Where is the Next Path? A Deep Learning Approach to Path Prediction without Prior Road Networks HMM-based Traffic State Prediction And Adaptive Routing Method In VANETs.- A Hybrid Deep Learning Approach for Traffic Flow Prediction in Highway Domain.- HomoNet: Unified License Plate Detection andRecognition in Complex Scenes.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.