Garg / Klimm / Kong | Web and Internet Economics | E-Book | sack.de
E-Book

E-Book, Englisch, Band 14413, 717 Seiten, eBook

Reihe: Lecture Notes in Computer Science

Garg / Klimm / Kong Web and Internet Economics

19th International Conference, WINE 2023, Shanghai, China, December 4–8, 2023, Proceedings
1. Auflage 2024
ISBN: 978-3-031-48974-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

19th International Conference, WINE 2023, Shanghai, China, December 4–8, 2023, Proceedings

E-Book, Englisch, Band 14413, 717 Seiten, eBook

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-48974-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume LNCS 14413 constitutes the refereed proceedings of the 19th International Conference, WINE 2023, in  December 2023 held in Shanghai, China.The 37 full papers presented together with 29 one-page abstracts were carefully reviewed and selected from 221 submissions. The WINE conference series aims to exchange research ideas in a diverse area of application at the intercept of theoretical computer science , artificial intelligence, operations research, and economics.
Garg / Klimm / Kong Web and Internet Economics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Best Paper Awards.- Stable Dinner Party Seating Arrangements.- Buy-Many Mechanisms for Many Unit-Demand Buyers.- Full Papers.- Partial Allocations in Budget-Feasible Mechanism Design: Bridging Multiple Levels of Service and Divisible Agents.- High-Welfare Matching Markets via Descending Price.- Fair Division with Allocator’s Preference.- Optimal Stopping with Multi-Dimensional Comparative Loss Aversion.- Selling to Multiple No-Regret Buyers.- Penalties and Rewards for Fair Learning in Paired Kidney Exchange Programs.- Deterministic Impartial Selection with Weights.- Blockchain Participation Games.- Recovering Single-Crossing Preferences From Approval Ballots.- The Good, the Bad and the Submodular: Fairly Allocating Mixed Manna Under Order-Neutral Submodular Preferences.- Dividing Good and Great Items among Agents with Bivalued Submodular Valuations.- Equilibrium Analysis of Customer Attraction Games.- The Importance of Knowing the Arrival Order in Combinatorial Bayesian Settings.- Prophet Inequalities via the Expected Competitive Ratio.- Smoothed Analysis of Social Choice, Revisited.- A Discrete and Bounded Locally Envy-Free Cake Cutting Protocol on Trees.- A Mechanism for Participatory Budgeting With Funding Constraints and Project Interactions.- Randomized Algorithm for MPMD on Two Sources.- Polyhedral Clinching Auctions for Indivisible Goods.- Online Matching with Stochastic Rewards: Advanced Analyses Using Configuration Linear Programs.- Online Nash Welfare Maximization Without Predictions.- The Price of Anarchy of Probabilistic Serial in One-Sided Allocation Problems.- An Adaptive and Verifiably Proportional Method for Participatory Budgeting.- Routing MEV in Constant Function Market Makers.- Auction Design for Value Maximizers with Budget and Return-on-spend Constraints.- Auction Design for Bidders with Ex Post ROI Constraints.- Nash Stability in Fractional Hedonic Games with Bounded Size Coalitions.- Improved Competitive Ratio for Edge-Weighted Online Stochastic Matching.- Separation in Distributionally Robust Monopolist Problem.- Target-Oriented Regret Minimization for Satisficing Monopolists.- One Quarter Each (on Average) Ensures Proportionality.- Two-Sided Capacitated Submodular Maximization in Gig Platforms.- Price Cycles in Ridesharing Platforms.- Improved Truthful Rank Approximation for Rank-Maximal Matchings.- Reallocation Mechanisms under Distributional Constraints in the Full Preference Domain.- Abstracts.- How Good Are Privacy Guarantees? Platform Architecture and Violation of User Privacy.- Best-of-Both-Worlds Fairness in Committee Voting.- Fair Division with Subjective Divisibility.- The Incentive Guarantees Behind Nash Welfare in Divisible Resources Allocation.- Information Design for SpatialResource Allocation.- Do Private Transaction Pools Mitigate Frontrunning Risk?.- Faster Ascending Auctions via Polymatroid Sum.- Dynamic Multinomial Logit Choice Model with Network Externalities: A Diffusive Analysis.- PRINCIPRO: Data-Driven Algorithms for Joint Pricing and Inventory Control under Price Protection.- Substitutes markets with budget constraints: solving for competitive and optimal prices.- Sequential Recommendation and Pricing under the Mixed Cascade Model.- Best-Response Dynamics in Tullock Contests with Convex Costs.- MNL-Prophet: Sequential Assortment Selection under Uncertainty.- Fair Incentives for Repeated Engagement.- Markov Persuasion Processes with Endogenous Agent Beliefs.- Stochastic Online Fisher Markets: Static Pricing Limits and Adaptive Enhancements.- The Colonel Blotto Game on Measure Spaces.- Assortment Optimization in the Presence of Focal Effect: Operational Insights and Efficient Algorithms.- On Hill’s Worst-Case Guarantee for Indivisible Bads.- Prophet Inequality on I.I.D. Distributions: Beating 1-1/e with a Single Query.- Allocating Emission Permits Efficiently via Uniform Linear Mechanisms.- Collective Search in Networks.- The Limits of School Choice with Consent.- Binary Mechanisms under Privacy-Preserving Noise.- Learning Non-parametric Choice Models with Discrete Fourier Analysis.- Threshold Policies with Tight Guarantees for Online Selection with Convex Costs.- Best Cost-Sharing Rule Design for Selfish Bin Packing.- Most Equitable Voting Rules.- Near-Optimal Dynamic Pricing in Large Networks.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.