Gastinel | Lineare numerische Analysis | E-Book | sack.de
E-Book

E-Book, Deutsch, 359 Seiten, eBook

Reihe: Logik und Grundlagen der Mathematik

Gastinel Lineare numerische Analysis


1971
ISBN: 978-3-322-85864-1
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Deutsch, 359 Seiten, eBook

Reihe: Logik und Grundlagen der Mathematik

ISBN: 978-3-322-85864-1
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark



Gastinel Lineare numerische Analysis jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Elementare Eigenschaften von Matrizen.- 1.1. Allgemeine Theorie.- 1.2. Matrizenrechnung.- 2. Vektor- und Matrizennormen.- 2.1. Grundlegende Eigenschaften.- 3. Invertierung von Matrizen—Theorie.- 3.1. Lineare Unabhängigkeit von Vektoren.- 3.2. Hauptsatz über die Existenz von Lösungen eines homogenen linearen Systems mit mehr Unbekannten als Gleichungen.- 3.3. Dimension.- 3.4. Isomorphie des Rn (bzw. Cn) zu jedem Vektorraum über R (bzw. C) von endlicher Dimension n.- 3.5. Umkehrbarkeit einer linearen Abbildung von Rn in Rm (bzw. von Cn in Cm).- 3.6. Linearität der inversen Abbildung einer umkehrbaren linearen Abbildung. Inverse Matrix.- 3.7. Indikator der linearen Unabhängigkeit.- 3.8. Eigenschaften der Determinanten.- 3.9. Existenz und Konstruktion von Determinanten.- 3.10. Formeln und Definitionen.- 3.11. Notwendige und hinreichende Bedingungen für die Invertierbarkeit einer Matrix A aus ?(n,n).- 3.12. Invertierbarkeit und Norm.- 3.13. Lösung eines linearen Systems (Theorie).- 4. Direkte Lösungsmethoden für lineare Systeme.- 4.1. Diagonalsysteme.- 4.2. Dreieckssysteme.- 4.3. Invertierung von Dreiecksmatrizen.- 4.4. Allgemeiner Fall: Der Gaußsche Algorithmus oder die Methode der einfachen Elimination.- 4.5. Der Gaußsche Algorithmus zur Lösung eines linearen Systems. Einfache Elimination; Rechenschema.- 4.6. Verbesserter Gaußscher Algorithmus. Das Verfahren von Crout.- 4.7. Die Methode von Jordan (Diagonalisierungsverfahren. Vollständige Elimination).- 4.8. Orthogonalisierungsmethoden. Schmidtsches Verfahren.- 4.9. Anwendung der allgemeinen direkten Verfahren zur Invertierung einer Matrix.- 4.10. Berechnung von Determinanten.- 4.11. Systeme mit symmetrischen Matrizen.- 4.12. Teilmatrizenverfahren.- 4.13. Ergänzungsverfahren.- Aufgaben zu denKapiteln 1–4.- 5. Indirekte Lösungsmethoden.- 5.1. Iteration und Relaxation.- 5.2. Lineare Iteration.- 5.3. Iterationen durch Projektionsmethoden.- 5.4. Iterationen für Systeme mit symmetrischer Matrix.- 5.5. Bemerkungen (für den Fall nichtsymmetrischer Systeme).- 5.6. Bemerkungen zur Konvergenz und Konvergenzverbesserung.- 5.7. Verbesserung der Elemente einer inversen Matrix (Hotelmng-Bodewig).- Aufgaben zu Kapitel 5.- 6. Invariante Unterräume.- 6.1. Einführung.- 6.2. Invariante Unterräume.- 6.3. Polynomtransformationen.- 6.4. Invariante Unterräume und Polynomtransformationen.- 6.5. Diagonalform.- 6.6. Das charakteristische Polynom.- 6.7. Polynommatrizen. Elementarteiler von Polynommatrizen.- 6.8. Normalformen. Basen bezüglich einer linearen Transformation.- 6.9. Funktionen von linearen Transformationen (Matrizenfunktionen).- 7. Anwendung der Eigenschaften invarianter Unterräume.- 7.1. Der Satz von Schub und Schlußfolgerungen.- 7.2. Polare Zerlegung.- 7.3. Matrizen mit nichtnegativen Elementen.- 7.4. Graphentheorie und Matrizen mit positiven Elementen.- 7.5. Vergleich der klassischen linearen Iterationen.- 7.6. Die Young-Frankelsche Theorie der Überrelaxation.- 7.7. Die Polynommethode. Das Verfahren von Peaceman-Rachford.- 7.8. Approximation des Spektralradius einer Matrix über eine Norm.- 8. Numerische Verfahren zur Berechnung von Eigenwerten und Eigenvektoren.- 8.1. Methoden zur direkten Bestimmung der charakteristischen Gleichung.- 8.2. Bestimmung des charakteristischen Polynoms mit Hilfe von Ähnlichkeitstransformationen.- 8.3. Berechnung von Eigenwerten und Eigenvektoren durch Iterationsverfahren (für nicht notwendig symmetrische Matrizen).- 8.4. Hermitesche (bzw. symmetrische) Matrizen.- Aufgaben zu den Kapiteln 6–8.- Literatur.- Namen- undSachverzeichnis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.