Buch, Englisch, Band 2842, 320 Seiten, Format (B × H): 155 mm x 233 mm, Gewicht: 1030 g
14th International Conference, ALT 2003, Sapporo, Japan, October 17-19, 2003, Proceedings
Buch, Englisch, Band 2842, 320 Seiten, Format (B × H): 155 mm x 233 mm, Gewicht: 1030 g
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-540-20291-2
Verlag: Springer
ContinuationoftheALTseriesissupervisedbyitssteeringcommittee,c- sisting of: Thomas Zeugmann (Univ.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
Weitere Infos & Material
Invited Papers.- Abduction and the Dualization Problem.- Signal Extraction and Knowledge Discovery Based on Statistical Modeling.- Association Computation for Information Access.- Efficient Data Representations That Preserve Information.- Can Learning in the Limit Be Done Efficiently?.- Inductive Inference.- Intrinsic Complexity of Uniform Learning.- On Ordinal VC-Dimension and Some Notions of Complexity.- Learning of Erasing Primitive Formal Systems from Positive Examples.- Changing the Inference Type – Keeping the Hypothesis Space.- Learning and Information Extraction.- Robust Inference of Relevant Attributes.- Efficient Learning of Ordered and Unordered Tree Patterns with Contractible Variables.- Learning with Queries.- On the Learnability of Erasing Pattern Languages in the Query Model.- Learning of Finite Unions of Tree Patterns with Repeated Internal Structured Variables from Queries.- Learning with Non-linear Optimization.- Kernel Trick Embedded Gaussian Mixture Model.- Efficiently Learning the Metric with Side-Information.- Learning Continuous Latent Variable Models with Bregman Divergences.- A Stochastic Gradient Descent Algorithm for Structural Risk Minimisation.- Learning from Random Examples.- On the Complexity of Training a Single Perceptron with Programmable Synaptic Delays.- Learning a Subclass of Regular Patterns in Polynomial Time.- Identification with Probability One of Stochastic Deterministic Linear Languages.- Online Prediction.- Criterion of Calibration for Transductive Confidence Machine with Limited Feedback.- Well-Calibrated Predictions from Online Compression Models.- Transductive Confidence Machine Is Universal.- On the Existence and Convergence of Computable Universal Priors.