Geskus | Data Analysis with Competing Risks and Intermediate States | E-Book | sack.de
E-Book

E-Book, Englisch, 277 Seiten

Reihe: Chapman & Hall/CRC Biostatistics Series

Geskus Data Analysis with Competing Risks and Intermediate States


Erscheinungsjahr 2015
ISBN: 978-1-4665-7036-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 277 Seiten

Reihe: Chapman & Hall/CRC Biostatistics Series

ISBN: 978-1-4665-7036-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Data Analysis with Competing Risks and Intermediate States explains when and how to use models and techniques for the analysis of competing risks and intermediate states. It covers the most recent insights on estimation techniques and discusses in detail how to interpret the obtained results.

After introducing example studies from the biomedical and epidemiological fields, the book formally defines the concepts that play a role in analyses with competing risks and intermediate states. It addresses nonparametric estimation of the relevant quantities. The book then shows how to use a stacked data set that offers great flexibility in the modeling of covariable effects on the transition rates between states. It also describes three ways to quantify effects on the cumulative scale.

Each chapter includes standard exercises that reflect on the concepts presented, a section on software that explains options in SAS and Stata and the functionality in the R program, and computer practicals that allow readers to practice with the techniques using an existing data set of bone marrow transplant patients. The book’s website provides the R code for the computer practicals along with other material.

For researchers with some experience in the analysis of standard time-to-event data, this practical and thorough treatment extends their knowledge and skills to the competing risks and multi-state settings. Researchers from other fields can also easily translate individuals and diseases to units and phenomena from their own areas.

Geskus Data Analysis with Competing Risks and Intermediate States jetzt bestellen!

Zielgruppe


Biostatistics, biomedical, and epidemiological researchers, practitioners, and graduate students.


Autoren/Hrsg.


Weitere Infos & Material


Basic Concepts
Introduction
Examples
Data structure
On rates and risks
Non-informative observation schemes?
The examples revisited
Notation
Basic techniques from survival analysis
Summary and preview
Exercises
R code for classical survival analysis
Computer practicals

Competing Risks; Nonparametric Estimation
Introduction
Theoretical relations
Estimation based on cause-specific hazard
Estimation; the subdistribution approach
Standard errors and confidence intervals
Log-rank tests and other subgroup comparisons
Summary; three principles of interpretability
Exercises
Software
Computer practicals

Intermediate Events; Nonparametric Estimation
Introduction; multi-state models
Main concepts and theoretical relations
Estimation
Example: HIV, SI, AIDS and death
Summary; some alternative approaches
Exercises
Software
Computer practicals

Regression; Cause-Specific/Transition Hazard
Introduction
Regression on cause-specific hazard; basic structure
Combined analysis and type-specific covariables
Why does the stacked approach work?
Multi-state regression models for transition hazards
Example: causes of death in HIV infected individuals
Summary
Exercises
Software
Computer practicals

Regression; Translation to Cumulative Scale
Introduction
From cause-specific/transition hazard to probability
Regression on subdistribution hazard
Multinomial regression
Summary
Exercises
Software
Computer practicals

Epilogue
Which type of quantity to choose?
Exercises

Bibliography

Appendix: Answers to Exercises

Index


Ronald B. Geskus is an associate professor at the Academic Medical Center in Amsterdam. He received a Ph.D. in mathematics from the Delft Technical University. His main research interests include competing risks and multi-state models, prediction of events based on time-updated marker values, and causal inference.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.