Buch, Englisch, 244 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 553 g
Machine Learning and Statistical Physics Approaches
Buch, Englisch, 244 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 553 g
Reihe: Springer Proceedings in Complexity
ISBN: 978-3-030-14682-5
Verlag: Springer International Publishing
The book contains extended versions of high-quality submissions received at the workshop, Dynamics On and Of Complex Networks (doocn.org), together with new invited contributions. The chapters will benefit a diverse community of researchers. The book is suitable for graduate students, postdoctoral researchers and professors of various disciplines including sociology, physics, mathematics, and computer science.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Geistes- und Sozialwissenschaften
- Mathematik | Informatik EDV | Informatik Informatik Berechenbarkeitstheorie, Komplexitätstheorie
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
Weitere Infos & Material
Part1. Network Structure.- Chapter1. An Empirical Study of the Effect of Noise Models on Centrality Metrics.- Chapter2. Emergence and Evolution of Hierarchical Structure in Complex Systems.- Chapter3. Evaluation of Cascading Infrastructure Failures and Optimal Recovery from a Network Science Perspective.- Part2. Network Dynamics.- Chapter4. Automatic Discovery of Families of Network Generative Processes.- Chapter5. Modeling User Dynamics in Collaboration Websites.- Chapter6. The Problem of Interaction Prediction in Link Streams.- Chapter7. The Network Source Location Problem in the Context of Foodborne Disease Outbreaks.- Part3. Theoretical Models and applications.- Chapter8. Network Representation Learning using Local Sharing and Distributed Graph Factorization (LSDGF).- Chapter9. The Anatomy of Reddit: An Overview of Academic Research.- Chapter10. Learning Information Dynamics in Social Media: A Temporal Point Process Perspective.