Gharibzahedi / Jalilpoor / Azad | Future Modern Distribution Networks Resilience | Buch | 978-0-443-16086-8 | sack.de

Buch, Englisch, Format (B × H): 152 mm x 229 mm, Gewicht: 700 g

Gharibzahedi / Jalilpoor / Azad

Future Modern Distribution Networks Resilience

From Passive Operation to Strategic Active Paradigms
Erscheinungsjahr 2024
ISBN: 978-0-443-16086-8
Verlag: Elsevier Science & Technology

From Passive Operation to Strategic Active Paradigms

Buch, Englisch, Format (B × H): 152 mm x 229 mm, Gewicht: 700 g

ISBN: 978-0-443-16086-8
Verlag: Elsevier Science & Technology


Future Modern Distribution Networks Resilience: From Passive Operation to Strategic Active Paradigms examines the combined impact of low-probability and high-impact events on modern distribution systems' resilience. Using practical guidance, the book provides comprehensive approaches for improving energy systems' resilience by utilizing infrastructure and operational strategies. Divided into three parts, Part One provides a conceptual introduction and review of power system resilience, including topics such as risk and vulnerability assessment in power systems, resilience metrics, and power systems operation and planning. Part Two discusses modelling of vulnerability and resilience evaluation indices and cost-benefit analysis. Part Three reviews infrastructure and operational strategies to improve power system resilience, including robust grid hardening strategies, mobile energy storage and electric vehicles, and networked microgrids and renewable energy resources. With a strong focus on economic results and cost-effectives, this book is a practical reference for students, researchers, and engineers interested in power engineering, energy systems, and renewable energy.

Gharibzahedi / Jalilpoor / Azad Future Modern Distribution Networks Resilience jetzt bestellen!

Weitere Infos & Material


Part 1: A conceptual introduction and review of power system resilience 1. Introduction and literature review of resilience concept in power systems 2. Resiliency challenges and opportunities in transiting from traditional networks to future modern energy grids 3. Risk and vulnerability assessment in power systems: A comprehensive review of challenges and outlook 4. A literature review of resilience metrics in power systems and their differences with reliability indices 5. A survey on the role of coordinating electricity and gas distribution systems for enhancing the power grid resilience 6. Power systems operation and planning: a literature review on smart resilience enhancement strategies Part 2: Modelling of vulnerability and resilience evaluation indices and cost-benefit analysis 7. Modelling of natural phenomena and extreme events in the study of power systems resilience 8. Vulnerability and risk modelling methods: A comprehensive framework from the resilience perspective 9. Resilience metrics: Assessment of distribution systems performance 10. Decision-making approach for power system resilience upgrades based on cost-benefit analysis 11. Cyber-constrained optimal power flow model for resilience enhancement of modern energy networks Part 3: Infrastructure and operational strategies to improve power system resilience 12. Robust grid hardening strategies for improving the resilience of electricity systems 13. Resiliency-oriented sustainable models for future renewable-based power systems 14. Improving power system resilience with mobile energy storage and electric vehicles 15. Resilient energy management: networked microgrids and renewable energy resource 16. Application of recovery techniques to enhance the resilience of energy systems 17. The role of machine learning in improving distribution systems resilience 18. Future perspectives and research areas for improving the power system resilience


Jalilpoor, Kamran
Kamran Jalilpoor received the M.S. degree in Electrical Engineering from the Shahid Beheshti University (SBU), Tehran, Iran, in 2018. He is currently working as a senior research assistant in the Department of Electrical Engineering, SBU. He is the author of several top journal and conference papers in the field of distribution system resilience. His research interest is oriented to different aspects of power systems resilience, including catastrophe risk modeling, damage assessment, disaster response and recovery and optimization methods.

Azad, Sasan
Sasan Azad is a Ph.D candidate in the Faculty of Electrical Engineering and a researcher at the Electrical Networks Institute at Shahid Beheshti University, Iran. His main areas of interest are the security and voltage stability of power systems, smart grids, and electric vehicles.

Mohammadi-Ivatloo, Behnam
Dr. Behnam Mohammadi-Ivatloo, PhD, is a Professor of sector coupling in energy systems at LUT University, Lappeenranta, Finland. He has a mix of high-level experience in research, teaching, administration and voluntary jobs at the national and international levels. He was PI or CO-PI in more than 20 externally funded research projects including grants from EU Horiozn and Business Finland. He is a Senior Member of IEEE since 2017 and a Member of the Governing Board of Iran Energy Association since 2013, where he was elected as President in 2019. He is Editor of IEEE Transactions on Power Systems and IEEE Transactions of Transportation Electrifications. His main areas of interest are integrated energy systems, sector coupling, renewable energies, energy storage systems, microgrids, and smart grids.

Daneshvar, Mohammadreza
Mohammadreza Daneshvar, PhD, is an Assistant Professor, founder and head of the Laboratory of Multi-Carrier Energy Networks Modernization at the Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran. Prior to that, he was a postdoctoral research fellow in the field of modern multi-energy networks at the Smart Energy Systems Lab of the University of Tabriz for two years. He obtained his MSc and PhD degrees in Electrical Power Engineering from the University of Tabriz, all with honors. He has (co)authored more than 50 technical journal and conference articles, 10 books, 28 book chapters, and 10 national and international research projects in the field. Dr. Daneshvar is a member of the Editorial Board of the Energy and Built Environment Journal and the Early Career Editorial Board of the Sustainable Cities and Society Journal. He also served as the guest editor for the Sustainable Cities and Society, and Sustainable Energy Technologies and Assessments journals. Moreover, he serves as an active reviewer with more than 120 top journals, and was ranked among the top 1% of reviewers in Engineering and Cross-Field based on Publons global reviewer database. His research interests include Smart Grids, Transactive Energy, Energy Management, Renewable Energy Sources, Integrated Multi-Energy Systems, Grid Modernization, Electrical Energy Storage Systems, Sustainable Cities and Society, Microgrids, Energy Hubs, Machine Learning and Deep Learning, Digital Twin, and Optimization Techniques and AI.

Shafie-khah, Miadreza
Miadreza Shafie-khah is a full professor and Scientific Director of the Energy Business eMBA at the University of Vaasa, Finland, and a visiting professor at the Royal Melbourne Institute of Technology, Australia. He is the editor-in-chief or associate editor of several prestigious journals including the IEEE Transactions on Sustainable Energy and the IEEE Transactions on Intelligent Transportation Systems. His main research interest is in demand response, decentralized electricity markets, and electric vehicles.

Gharibzahedi, Seyed Mohammad Taghi
Dr. Gharibzahedi holds a Ph.D. in Food Biotechnology from the University of Tehran. With over 20 years of experience, his research focuses on nonthermal processing technologies, food chemistry, emulsion-based delivery systems, encapsulation of substances in edible matrices, functional foods, enzyme technology, food industry by-product utilization, and the extraction and purification of biomacromolecules, particularly polysaccharides. He has authored over 120 peer-reviewed publications, 7 book chapters, and 67 conference presentations, with over 6,072 citations and an h-index of 46. Dr. Gharibzahedi has collaborated with more than 100 scientists from leading global institutions and contributed to numerous high-impact projects. He has received multiple prestigious awards, including the Georg Forster Research Fellowship (Alexander von Humboldt Foundation, Germany). He has been ranked in the Stanford University list of the world's top 2% of scientists from 2020 to 2024. Also, he is a well-established reviewer and an associate editor for several high-ranking journals.

Sepasian, Mohammad Sadegh
Mohammad Sadegh Sepasian was born in Tehran, Iran, in 1967. He received the B.Sc. degree from Tabriz University (Iran) in 1990 and the M.Sc. and Ph.D. degrees from Tehran University and Tarbiat Modares University (Iran) in 1993 and 1999, respectively. Since 1994, he has been with Abbaspour Technical and Engineering Department, Shahid Beheshti University in Tehran, Iran where he is currently an associate professor. During this period, he has had supervising more than 31 MSc and 7 PhD students while at the same time, he has had several important responsibilities such as Vice-Chancellor in Education of electrical department and Head of Faculty of Electrical Engineering of the University. He also acted as the Senior Researcher for the Iran Power System Engineering Research Center (IPSERC), affiliated to Tarbiat modares University. He managed several national projects for the Iranian power grid. His research interests are distribution networks, power system planning, electric vehicles, and smart grids.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.