E-Book, Englisch, 574 Seiten, eBook
Reihe: Classics in Mathematics
Gikhman / Skorokhod The Theory of Stochastic Processes I
Erscheinungsjahr 2015
ISBN: 978-3-642-61943-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 574 Seiten, eBook
Reihe: Classics in Mathematics
ISBN: 978-3-642-61943-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Weitere Infos & Material
I. Basic Notions of Probability Theory.- § 1. Axioms and Definitions.- § 2. Independence.- § 3. Conditional Probabilities and Conditional Expectations.- § 4. Random Functions and Random Mappings.- II. Random Sequences.- § 1. Preliminary Remarks.- § 2. Semi-Martingales and Martingales.- § 3. Series.- § 4. Markov Chains.- § 5. Markov Chains with a Countable Number of States.- § 6. Random Walks on a Lattice.- § 7. Local Limit Theorems for Lattice Walks.- § 8. Ergodic Theorems.- III. Random Functions.- § 1. Some Classes of Random Functions.- § 2. Separable Random Functions.- § 3. Measurable Random Functions.- § 4. A Criterion for the Absence of Discontinuities of the Second Kind.- § 5. Continuous Processes.- IV. Linear Theory of Random Processes.- § 1. Correlation Functions.- § 2. Spectral Representations of Correlation Functions.- § 3. A Basic Analysis of Hilbert Random Functions.- § 4. Stochastic Measures and Integrals.- § 5. Integral Representation of Random Functions.- § 6. Linear Transformations.- § 7. Physically Realizable Filters.- § 8. Forecasting and Filtering of Stationary Processes.- § 9. General Theorems on Forecasting Stationary Processes.- V. Probability Measures on Functional Spaces.- § 1. Measures Associated with Random Processes.- § 2. Measures in Metric Spaces.- § 3. Measures on Linear Spaces. Characteristic Functionals.- § 4. Measures in ?p Spaces.- § 5. Measures in Hilbert Spaces.- § 6. Gaussian Measures in a Hilbert Space.- VI. Limit Theorems for Random Processes.- § 1. Weak Convergences of Measures in Metric Spaces.- § 2. Conditions for Weak Convergence of Measures in Hilbert Spaces.- § 3. Sums of Independent Random Variables with Values in a Hilbert Space.- § 4. Limit Theorems for Continuous Random Processes.- §5. Limit Theorems for Processes without Discontinuities of the Second Kind.- VII. Absolute Continuity of Measures Associated with Random Processes.- § 1. General Theorems on Absolute Continuity.- § 2. Admissible Shifts in Hilbert Spaces.- § 3. Absolute Continuity of Measures under Mappings of Spaces.- § 4. Absolute Continuity of Gaussian Measures in a Hilbert Space.- § 5. Equivalence and Orthogonality of Measures Associated with Stationary Gaussian Processes.- § 6. General Properties of Densities of Measures Associated with Markov Processes.- VIII. Measurable Functions on Hilbert Spaces.- § 1. Measurable Linear Functionals and Operators on Hilbert Spaces.- § 2. Measurable Polynomial Functions. Orthogonal Polynomials.- § 3. Measurable Mappings.- § 4. Calculation of Certain Characteristics of Transformed Measures.- Historical and Bibliographical Remarks.- Corrections.