Goebbels / Ritter | Mathematik verstehen und anwenden – von den Grundlagen bis zu Fourier-Reihen und Laplace-Transformation | Buch | 978-3-8274-3007-6 | sack.de

Buch, Deutsch, 948 Seiten, Book, Format (B × H): 168 mm x 240 mm

Goebbels / Ritter

Mathematik verstehen und anwenden – von den Grundlagen bis zu Fourier-Reihen und Laplace-Transformation


2., überarbeitete und erweiterte Auflage 2013
ISBN: 978-3-8274-3007-6
Verlag: Springer

Buch, Deutsch, 948 Seiten, Book, Format (B × H): 168 mm x 240 mm

ISBN: 978-3-8274-3007-6
Verlag: Springer


Gegen Angst vor Mathematik hilft Verstehen. Dieses Buch setzt nur elementare Schulkenntnisse voraus und führt schrittweise und systematisch von der Bruchrechnung bis zu erstaunlichen Sätzen der Höheren Mathematik. Ausgehend von Problemstellungen aus Elektrotechnik und Maschinenbau werden Differenzial- und Integralrechnung, Vektorrechnung, Differenzialgleichungen, Fourier-Reihen, Integraltransformationen sowie Wahrscheinlichkeitsrechnung und Statistik behandelt. Neben vielen Anwendungsbeispielen aus den Ingenieurwissenschaften finden Sie zu jedem Kapitel zahlreiche Aufgaben (mit Lösungen auf der Website) zum Selbstrechnen. In der zweiten Auflage wurde unter Berücksichtigung der Leserwünsche der Stoffumfang behutsam erweitert, didaktisch überarbeitet und durch weitere anschauliche Beispiele ergänzt.

Goebbels / Ritter Mathematik verstehen und anwenden – von den Grundlagen bis zu Fourier-Reihen und Laplace-Transformation jetzt bestellen!

Zielgruppe


Lower undergraduate

Weitere Infos & Material


Vorwort.- 1 Grundlagen.- 1.1 Mengenlehre. 1.2 Logik. 1.3 Reelle Zahlen. 1.4 Rechnen mit reellen Zahlen. 1.5 Reelle Funktionen. 1.6 Komplexe Zahlen. 1.7 Lineare Gleichungssysteme und Matrizen. 1.8 Determinanten. 1.9 Aufgaben.- 2 Differenzial- und Integralrechnung.- 2.1 Folgen. 2.2 Zahlen-Reihen. 2.3 Grenzwerte von Funktionen und Stetigkeit. 2.4 Differenzierbarkeit und Ableitungen. 2.5 Zentrale Sätze der Differenzialrechnung. 2.6 Integralrechnung. 2.7 Satz von Taylor, Kurvendiskussion und Extremalprobleme. 2.8 Potenzreihen. 2.9 Aufgaben.- 3 Lineare Algebra.- 3.1 Vektoren in der Ebene und im Raum. 3.2 Analytische Geometrie. 3.3 Vektorräume. 3.4 Lineare Abbildungen. 3.5 Lösungstheorie linearer Gleichungssysteme. 3.6 Eigenwerte und Eigenvektoren. 3.7 Aufgaben.- 4 Funktionen mit mehreren Variablen.- 4.1 Grenzwerte und Stetigkeit. 4.2 Ableitungen von reellwertigen Funktionen mit mehreren Variablen. 4.3 Extremwertrechnung. 4.4 Integralrechnung mit mehreren Variablen. 4.5 Vektoranalysis. 4.6 Aufgaben.- 5 Gewöhnliche Differenzialgleichungen.- 5.1 Einführung. 5.2 Lösungsmethoden für Differenzialgleichungen erster Ordnung. 5.3 Lineare Differenzialgleichungssysteme. 5.4 Lineare Differenzialgleichungen höherer Ordnung. 5.5 Aufgaben.- 6 Fourier-Reihen und Integraltransformationen.- 6.1 Fourier-Reihen. 6.2 Fourier-Transformation. 6.3 Laplace-Transformation. 6.4 Diskrete Fourier-Transformation. 6.5 Aufgaben.- 7 Wahrscheinlichkeitsrechnung und Statistik.- 7.1 Beschreibende Statistik. 7.2 Wahrscheinlichkeitsrechnung. 7.3 Schließende Statistik. 7.4 Aufgaben.- Literaturverzeichnis.- Index.


An der Hochschule Niederrhein in Krefeld ist Dr. Steffen Goebbels Professor im Fachbereich Elektrotechnik und Informatik, wo er Höhere Mathematik für Ingenieure unterrichtet.Dr. Stefan Ritter ist Professor für Mathematik an der Hochschule Karlsruhe und unterrichtet Ingenieure der Nachrichtentechnik.Beide Mathematiker haben einen anwendungsbezogenen Hintergrund (langjährige Projekte bei IBM und Daimler-Benz) und bringen Ihre Erfahrung mit Studienanfängern in diesen Text ein.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.