González-Vargas / Ibáñez / Contreras-Vidal | Wearable Robotics: Challenges and Trends | E-Book | sack.de
E-Book

E-Book, Englisch, Band 16, 393 Seiten, eBook

Reihe: Biosystems & Biorobotics

González-Vargas / Ibáñez / Contreras-Vidal Wearable Robotics: Challenges and Trends

Proceedings of the 2nd International Symposium on Wearable Robotics, WeRob2016, October 18-21, 2016, Segovia, Spain

E-Book, Englisch, Band 16, 393 Seiten, eBook

Reihe: Biosystems & Biorobotics

ISBN: 978-3-319-46532-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: Wasserzeichen (»Systemvoraussetzungen)



The book reports on advanced topics in the areas of wearable robotics research and practice. It focuses on new technologies, including neural interfaces, soft wearable robots, sensors and actuators technologies, and discusses important regulatory challenges, as well as clinical and ethical issues. Based on the 2
nd
International Symposium on Wearable Robotics, WeRob2016, held October 18-21, 2016, in Segovia, Spain, the book addresses a large audience of academics and professionals working in government, industry, and medical centers, and end-users alike. It provides them with specialized information and with a source of inspiration for new ideas and collaborations. It discusses exemplary case studies highlighting practical challenges related to the implementation of wearable robots in a number of fields. One of the focus is on clinical applications, which was encouraged by the colocation of WeRob2016 with the International Conference on Neurorehabilitation, INCR2016. Additional topics include space applications and assistive technologies in the industry. The book merges together the engineering, medical, ethical and political perspectives, thus offering a multidisciplinary, timely snapshot of the field of wearable technologies.
González-Vargas / Ibáñez / Contreras-Vidal Wearable Robotics: Challenges and Trends jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Contents;6
2;Clinical Focus on Rehabilitation and Assistive WRs;14
3;1 Clinical Evaluation of a Socket-Ready Naturally Controlled Multichannel Upper Limb Prosthetic System;15
3.1;Abstract;15
3.2;1 Introduction;16
3.3;2 Methods;16
3.3.1;2.1 Subjects;16
3.3.2;2.2 Hardware and Control Algorithm;16
3.3.3;2.3 Clinical Testing;17
3.3.4;2.4 Experiment Protocol;17
3.4;3 Results;18
3.5;4 Conclusions and Discussion;18
3.6;Acknowledgments;19
3.7;References;19
4;2 Evaluation of a Robotic Exoskeleton for Gait Training in Acute Stroke: A Case Study;20
4.1;Abstract;20
4.2;1 Introduction;21
4.3;2 Materials and Methods;21
4.3.1;2.1 Participants;21
4.3.2;2.2 Robotic Exoskeleton (RE) Device;22
4.3.3;2.3 Experimental Procedure and Data Analysis;22
4.4;3 Results;23
4.5;4 Discussion;24
4.6;References;24
5;3 Wearable Exoskeleton Assisted Rehabilitation in Multiple Sclerosis: Feasibility and Experience;25
5.1;Abstract;25
5.2;1 Introduction;26
5.3;2 Materials and Methods;26
5.3.1;2.1 Subjects;26
5.3.2;2.2 Exoskeleton Assisted Training;26
5.3.3;2.3 Outcome Measures;27
5.3.4;2.4 Data Analysis;28
5.4;3 Results;28
5.5;4 Discussion;29
5.6;5 Conclusion;29
5.7;Acknowledgment;29
5.8;References;29
6;4 Exoskeletons for Rehabilitation and Personal Mobility: Creating Clinical Evidence;30
6.1;Abstract;30
6.2;1 Introduction;30
6.3;2 Material and Methods;31
6.3.1;2.1 Patient Populations;31
6.3.2;2.2 Exoskeletons;31
6.3.3;2.3 Clinical Studies;32
6.4;3 Results;32
6.5;4 Discussion;32
6.6;5 Conclusion;33
6.7;References;33
7;5 Lower Limb Wearable Systems for Mobility and Rehabilitation Challenges: Clinical Focus;34
7.1;Abstract;34
7.2;1 Introduction;34
7.3;2 Gait Rehabilitation;35
7.4;3 Gait Substitution;36
7.5;4 Clinical Aspects for Gait Rehabilitation;36
7.6;5 Conclusions;37
7.7;Acknowledgment;37
7.8;References;37
8;Emerging Technologies in WRs;39
9;Impedance Control of Series Elastic Actuators Using Acceleration Feedback;40
9.1;1 Introduction;40
9.2;2 Impedance Control of Series Elastic Actuators;42
9.3;3 Impedance Control Using Acceleration Feedback;42
9.4;4 Conclusions;43
9.5;References;43
10;7 Kinetic Energy Recovery in Human Joints: The Flywheel-Infinitely Variable Transmission Actuator;45
10.1;Abstract;45
10.2;1 Introduction;45
10.3;2 The F-IVT Actuator: Working Principle and Performance Calculation;46
10.3.1;2.1 Working Principle of F-IVT;46
10.3.2;2.2 Performance Calculation;47
10.4;3 Results and Discussion;48
10.5;4 Conclusion;49
10.6;References;49
11;A Compliant Lightweight and Adaptable Active Ankle Foot Orthosis for Robotic Rehabilitation;50
11.1;1 Introduction;50
11.2;2 Mechanical Design of the AAFO;51
11.2.1;2.1 Ankle Actuator;51
11.2.2;2.2 Connections to the User;52
11.3;3 Ankle Actuator Characterization;53
11.4;4 Conclusion;54
11.5;References;54
12;A Novel Shoulder Mechanism with a Double Parallelogram Linkage for Upper-Body Exoskeletons;55
12.1;1 Introduction;55
12.2;2 Conceptual Design of Novel Shoulder Mechanism for an Upper-Body Exoskeleton;56
12.3;3 Kinematic Analysis of the Mechanism;57
12.4;4 Application of the Novel Spherical Shoulder Mechanism;58
12.5;5 Conclusion;59
12.6;References;59
13;A Soft Robotic Extra-Finger and Arm Support to Recover Grasp Capabilities in Chronic Stroke Patients;61
13.1;1 Introduction;62
13.2;2 The Soft-SixthFinger and Robotic Arm System;63
13.3;3 Pilot Study;64
13.4;4 Conclusion;64
13.5;References;65
14;11 A Quasi-Passive Knee Exoskeleton to Assist During Descent;66
14.1;Abstract;66
14.2;1 Introduction;66
14.3;2 Materials and Methods;67
14.4;3 Results and Discussion;68
14.5;4 Conclusions;69
14.6;References;69
15;Wearable Sensory Apparatus for Multi-segment System Orientation Estimation with Long-Term Drift and Magnetic Disturbance Compensation;71
15.1;1 Introduction;71
15.2;2 Methods;72
15.2.1;2.1 Wearable Sensors;72
15.2.2;2.2 Kinematic Relations;73
15.2.3;2.3 Magnetic Model;73
15.2.4;2.4 Model-Based Extended Kalman Filter;73
15.3;3 Results;74
15.4;4 Discussion and Conclusion;75
15.5;References;75
16;13 A Portable Active Pelvis Orthosis for Ambulatory Movement Assistance;76
16.1;Abstract;76
16.2;1 Introduction;77
16.3;2 Materials and Methods;77
16.3.1;2.1 Mechanics;77
16.3.2;2.2 Actuation Units;78
16.3.3;2.3 Control;79
16.4;3 System Validation and Results;79
16.5;4 Discussion and Conclusion;80
16.6;References;80
17;Soft Wearable Robotics;82
18;14 XoSoft - A Vision for a Soft Modular Lower Limb Exoskeleton;83
18.1;Abstract;83
18.2;1 Introduction;84
18.3;2 User Centered Design;85
18.4;3 User Groups;86
18.5;4 System Description;86
18.6;5 Conclusions;87
18.7;Acknowledgment;87
18.8;References;87
19;15 On the Efficacy of Isolating Shoulder and Elbow Movements with a Soft, Portable, and Wearable Robotic Device;89
19.1;Abstract;89
19.2;1 Introduction;90
19.3;2 Materials and Methods;90
19.3.1;2.1 Device Description;90
19.3.2;2.2 Subject Description;91
19.3.3;2.3 Exercise Description;91
19.4;3 Results;92
19.5;4 Conclusion;93
19.6;References;93
20;16 Design Improvement of a Polymer-Based Tendon-Driven Wearable Robotic Hand (Exo-Glove Poly);94
20.1;Abstract;94
20.2;1 Introduction;94
20.3;2 Design Improvement;96
20.3.1;2.1 Magnet Embedment;96
20.3.2;2.2 Tendon Length Adjustment Mechanism;97
20.4;3 Conclusion;98
20.5;References;98
21;17 Affective Touch and Low Power Artificial Muscles for Rehabilitative and Assistive Wearable Soft Robotics;99
21.1;Abstract;99
21.2;1 Introduction;99
21.3;2 Affective Touch;100
21.3.1;2.1 Affective Tactile Stimulation;101
21.4;3 Artificial Muscle Rehabilitation;101
21.5;4 Conclusions;103
21.6;References;103
22;18 Evaluation of Force Tracking Controller with Soft Exosuit for Hip Extension Assistance;105
22.1;Abstract;105
22.2;1 Introduction;105
22.3;2 Material and Methods;106
22.3.1;2.1 Sensing and Actuation;106
22.3.2;2.2 Force Tracking Controller Description;107
22.4;3 Results;107
22.5;4 Conclusion;108
22.6;Acknowledgments;108
22.7;References;108
23;Neural Interfacing of WRs;110
24;19 Endogenous Control of Powered Lower-Limb Exoskeleton;111
24.1;Abstract;111
24.2;1 Introduction;112
24.3;2 Method;112
24.3.1;2.1 Hardware Setup;112
24.3.2;2.2 Protocol;112
24.3.3;2.3 Experiment Scenario;113
24.3.4;2.4 Signal Processing and Decoding;114
24.4;3 Results;114
24.5;4 Discussion;115
24.6;References;115
25;20 Natural User-Controlled Ambulation of Lower Extremity Exoskeletons for Individuals with Spinal Cord Injury;116
25.1;Abstract;116
25.2;1 Introduction;117
25.3;2 Surrogate Articulation of Gait;117
25.4;3 Methods;118
25.4.1;3.1 Experimental Apparatus;118
25.4.2;3.2 Admittance Control of Hand-Walking;118
25.5;4 Results;119
25.6;References;120
26;Real-Time Modeling for Lower Limb Exoskeletons;121
26.1;1 Introduction;121
26.2;2 Method;122
26.2.1;2.1 Real-Time EMG-Driven NMS Modeling;122
26.2.2;2.2 Interface with the H2 Lower-Limb Exoskeleton;122
26.2.3;2.3 Experimental Protocol and Tests;123
26.3;3 Conclusion;124
26.4;References;124
27;22 Towards Everyday Shared Control of Lower Limb Exoskeletons;126
27.1;Abstract;126
27.2;1 Introduction;126
27.3;2 Shared Control;127
27.4;3 Lower Limb Exoskeletons;127
27.5;4 Discussion and Future Work;128
27.6;Acknowledgments;128
27.7;References;128
28;Biomechanics and Neurophysiological Studies with WRs;129
29;23 Joint-Level Responses to Counteract Perturbations Scale with Perturbation Magnitude and Direction;130
29.1;Abstract;130
29.2;1 Introduction;130
29.3;2 Materials and Methods;131
29.3.1;2.1 Experimental Setup and Protocol;131
29.3.2;2.2 Data Processing;131
29.4;3 Results;132
29.5;4 Discussion;133
29.6;5 Conclusions;133
29.7;References;133
30;24 Metabolic Energy Consumption in a Box-Lifting Task: A Parametric Study on the Assistive Torque;134
30.1;Abstract;134
30.2;1 Introduction;134
30.3;2 Methods;135
30.3.1;2.1 Musculoskeletal Model (MSM);135
30.3.2;2.2 Box-Lifting Movement;136
30.3.3;2.3 Metabolic Energy;136
30.3.4;2.4 Assistive Torque;136
30.3.5;2.5 Box Interaction with the MSM;137
30.4;3 Results;137
30.5;4 Discussion;138
30.6;5 Conclusions and Future Work;138
30.7;References;139
31;25 Analysis of the Movement Variability in Dance Activities Using Wearable Sensors;140
31.1;Abstract;140
31.2;1 Introduction;140
31.3;2 Methods;141
31.3.1;2.1 Time-Delay Embedding;141
31.3.2;2.2 Framework for the Experiment;141
31.3.3;2.3 Participants;142
31.3.4;2.4 Experiment Design;142
31.3.5;2.5 Data Collection;142
31.4;3 Results;143
31.5;4 Conclusion and Future Work;144
31.6;References;144
32;New Developments in Wearable Rehabilitation Robotics;146
33;26 Real Time Computation of Centroidal Momentum for the Use as a Stability Index Applicable to Human Walking with Exoskeleton;147
33.1;Abstract;147
33.2;1 Introduction;147
33.3;2 Centroidal Momentum;148
33.4;3 Real Time Computation of CM;149
33.4.1;3.1 Demonstration Platform;149
33.4.2;3.2 Demonstration During Natural Overground Walking;149
33.4.3;3.3 Demonstration During Walking with Tripping Events;149
33.5;4 Conclusion;151
33.6;Acknowledgments;151
33.7;References;151
34;A Versatile Neuromuscular Exoskeleton Controller for Gait Assistance: A Preliminary Study on Spinal Cord Injury Patients;152
34.1;1 Introduction;152
34.2;2 Materials and Methods;153
34.3;3 Results;153
34.4;4 Discussion;155
34.5;5 Conclusion;155
34.6;References;156
35;28 Introducing a Modular, Personalized Exoskeleton for Ankle and Knee Support of Individuals with a Spinal Cord Injury;157
35.1;Abstract;157
35.2;1 Introduction;157
35.3;2 Mechanical Design;159
35.4;3 Electronic Design;160
35.5;4 Specifications;160
35.6;5 Conclusion;160
35.7;Acknowledgments;160
35.8;References;161
36;29 Towards Exoskeletons with Balance Capacities;162
36.1;Abstract;162
36.2;1 Introduction;163
36.3;2 Materials and Methods;163
36.3.1;2.1 Experimental Setup and Protocol;163
36.4;3 Results;164
36.5;4 Discussion;165
36.6;5 Conclusions;165
36.7;References;166
37;30 EMG-Based Detection of User’s Intentions for Human-Machine Shared Control of an Assistive Upper-Limb Exoskeleton;167
37.1;Abstract;167
37.2;1 Introduction;167
37.3;2 Materials and Methods;168
37.3.1;2.1 Exoskeleton;168
37.3.2;2.2 Setup of the Study;168
37.3.3;2.3 Motion Intention Detection;169
37.3.4;2.4 Classification of Movement Direction;169
37.4;3 Results;170
37.5;4 Discussion;171
37.6;5 Conclusions;171
37.7;References;171
38;Legal Framework, Standardization and Ethical Issues in WRs;172
39;31 Safety Standardization of Wearable Robots—The Need for Testing Methods;173
39.1;Abstract;173
39.2;1 Introduction;173
39.3;2 Regulation of Wearable Robots;174
39.4;3 Need for Testing Procedures;176
39.5;4 Conclusion;176
39.6;References;177
40;32 The Potential and Acceptance of Exoskeletons in Industry;178
40.1;Abstract;178
40.2;1 Introduction;178
40.3;2 Methods;179
40.3.1;2.1 Stakeholder Analysis;179
40.3.2;2.2 Literature Review;179
40.3.3;2.3 Acceptance;179
40.4;3 Results;180
40.4.1;3.1 Stakeholder-Analysis Results;180
40.4.2;3.2 Literature Review Results;181
40.5;4 Discussion and Conclusions;181
40.6;Acknowledgments;181
40.7;References;182
41;33 Wearable Robots: A Legal Analysis;183
41.1;Abstract;183
41.2;1 Introduction;183
41.3;2 Legal Definitions;184
41.4;3 Liability and Insurance;184
41.5;4 Human Enhancement;185
41.6;5 Final Considerations;186
41.7;References;186
42;34 A Verification Method for Testing Abrasion in the Use of Restraint Type Personal Care Robots;187
42.1;Abstract;187
42.2;1 Introduction;187
42.3;2 Verification Test Method for Abrasion Risk;188
42.4;3 Validation of the Verified Data;190
42.5;4 Conclusion;191
42.6;Acknowledgments;191
42.7;References;191
43;Benchmarking in WRs and Related Communities;192
44;35 Kinematic Comparison of Gait Rehabilitation with Exoskeleton and End-Effector Devices;193
44.1;Abstract;193
44.2;1 Introduction;193
44.3;2 Materials and Methods;194
44.3.1;2.1 Robot Systems: Exoskeleton and End-Effector Devices;194
44.3.2;2.2 Procedure and Instrumentation;195
44.4;3 Results and Discussion;195
44.4.1;3.1 Comparison of Gait Motion Trajectory;195
44.4.2;3.2 Comparison of Stair Climbing and Descending Motion;196
44.5;4 Conclusion;197
44.6;References;197
45;36 Evaluating the Gait of Lower Limb Prosthesis Users;198
45.1;Abstract;198
45.2;1 Introduction;199
45.3;2 Methods;199
45.3.1;2.1 The CAREN System;199
45.3.2;2.2 Data Collection and Analysis;200
45.4;3 Results;201
45.5;4 Discussion;202
45.6;5 Conclusion;202
45.7;References;202
46;37 Some Considerations on Benchmarking of Wearable Robots for Mobility;204
46.1;Abstract;204
46.2;1 Introduction;204
46.3;2 Metabolic Cost of Walking;205
46.4;3 Balance Performance;206
46.5;4 Conclusion;207
46.6;References;207
47;Benchmarking Data for Human Walking in Different Scenarios;209
47.1;1 Introduction;209
47.2;2 The Koroibot Project and the Koroibot Motion Capture Database;210
47.3;3 Human Walking Reference Data;211
47.4;4 Conclusion & Outlook;211
47.5;References;212
48;39 Clinical Gait Assessment in Relation to Benchmarking Robot Locomotion;213
48.1;Abstract;213
48.2;1 Introduction;213
48.2.1;1.1 Taxonomies Related to International Classification of Functioning;214
48.2.2;1.2 Clinical Assessments for Bipedal Locomotion;215
48.3;2 Method;216
48.4;3 Results;216
48.5;4 Discussion;216
48.6;5 Conclusion;217
48.7;References;217
49;Symbiotic Control of WRs;218
50;Attention Level Measurement During Exoskeleton Rehabilitation Through a BMI System;219
50.1;1 Introduction;219
50.2;2 Materials and Methods;220
50.2.1;2.1 Ankle Exoskeleton;220
50.2.2;2.2 EEG Acquisition;220
50.2.3;2.3 EEG Real Time Processing and Feature Extraction;221
50.2.4;2.4 EEG Classification;221
50.2.5;2.5 Experimental Protocol;221
50.3;3 Results and Discussion;222
50.4;4 Conclusions;222
50.5;References;223
51;41 Detection of Subject’s Intention to Trigger Transitions Between Sit, Stand and Walk with a Lower Limb Exoskeleton;224
51.1;Abstract;224
51.2;1 Introduction;225
51.3;2 Materials and Methods;225
51.3.1;2.1 Material;225
51.3.2;2.2 Protocol;226
51.3.3;2.3 Classifier;226
51.4;3 Results;227
51.5;4 Discussion;227
51.6;5 Conclusions;228
51.7;References;228
52;The New Generation of Compliant Actuators for Use in Controllable Bio-Inspired Wearable Robots;229
52.1;1 Introduction;229
52.2;2 Compliant Actuation in WRs for Gait;230
52.3;3 Control Strategy;232
52.4;4 Conclusion;233
52.5;References;233
53;An EMG-informed Model to Evaluate Assistance of the Biomot Compliant Ankle Actuator;234
53.1;1 Introduction;234
53.2;2 Materials and Methods;235
53.3;3 Results;236
53.4;4 Discussion;237
53.5;5 Conclusions;237
53.6;References;238
54;Tacit Adaptability of a Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator, a Preliminary Study;239
54.1;1 Introduction;239
54.2;2 Materials and Methods;240
54.3;3 Results;241
54.4;4 Conclusion;242
54.5;5 Futute Work;242
54.6;References;243
55;Emerging Applications Domains of WRs, Emerging Technologies in WRs;244
56;Design and Kinematic Analysis of the Hanyang Exoskeleton Assistive Robot (HEXAR) for Human Synchronized Motion;245
56.1;1 Introduction;245
56.2;2 System Requirements;246
56.3;3 Mechanical Design of HEXAR-CR50;246
56.4;4 Kinematic Simulation with Walking Motions;247
56.5;5 Conclusion;248
56.6;References;249
57;46 Design and Experimental Evaluation of a Low-Cost Robotic Orthosis for Gait Assistance in Subjects with Spinal Cord Injury;250
57.1;Abstract;250
57.2;1 Introduction;250
57.3;2 Robotic Orthosis Design;251
57.3.1;2.1 Knee Actuation System;252
57.3.2;2.2 Sensors and Control;252
57.4;3 Experimental Evaluation;253
57.5;4 Conclusion;254
57.6;References;254
58;A Powered Low-Back Exoskeleton for Industrial Handling: Considerations on Controls;255
58.1;1 Introduction;255
58.2;2 Low-Back Exoskeleton;256
58.3;3 Low-Level: Actuator Control;257
58.4;4 High-Level: Assistive Strategy;257
58.5;5 Conclusions;258
58.6;References;258
59;48 Efficient Lower Limb Exoskeleton for Human Motion Assistance;260
59.1;Abstract;260
59.2;1 Introduction;260
59.3;2 Mechanical Design and Components;261
59.4;3 Exoskeleton Operation;262
59.5;4 Conclusion;263
59.6;References;263
60;Active Safety Functions for Industrial Lower Body Exoskeletons: Concept and Assessment;265
60.1;1 Introduction;265
60.2;2 Active Safety Functional Concepts;266
60.3;3 Hazard Analysis and Risk Assessment;268
60.4;4 Conclusions;269
60.5;References;269
61;50 SOLEUS: Ankle Foot Orthosis for Space Countermeasure with Immersive Virtual Reality;270
61.1;Abstract;270
61.2;1 Introduction;270
61.3;2 SOLEUS Project Expected Benefits;271
61.4;3 SOLEUS System Architecture;272
61.4.1;3.1 Exoskeletons Subsystem;272
61.4.2;3.2 Virtual Reality Subsystem;272
61.5;4 Musculo-Skeletal Simulations;273
61.6;5 Scientific Evaluation;273
61.7;6 Conclusion;274
61.8;Acknowledgments;274
61.9;References;274
62;SPEXOR: Spinal Exoskeletal Robot for Low Back Pain Prevention and Vocational Reintegration;275
62.1;1 Context;276
62.2;2 Objectives;276
62.3;3 Going Beyond the State of the Art;277
62.4;References;279
63;Posters;280
64;52 HeSA, Hip Exoskeleton for Superior Assistance;281
64.1;Abstract;281
64.2;1 Introduction;281
64.3;2 Design;282
64.4;3 Control;282
64.5;4 Testing;283
64.6;5 Conclusion;284
64.7;Acknowledgments;285
64.8;References;285
65;SPEXOR: Towards a Passive Spinal Exoskeleton;286
65.1;1 Introduction;287
65.2;2 SOTA of Passive Exoskeletons;288
65.3;3 Going Beyond;288
65.4;4 Conclusion;289
65.5;References;289
66;54 Autonomous Soft Exosuit for Hip Extension Assistance;291
66.1;Abstract;291
66.2;1 Introduction;291
66.3;2 System Description;292
66.3.1;2.1 Actuation and Suit;292
66.3.2;2.2 IMU-Based Iterative Controller;293
66.4;3 Results;294
66.5;4 Conclusion;294
66.6;References;295
67;55 Comparison of Ankle Moment Inspired and Ankle Positive Power Inspired Controllers for a Multi-Articular Soft Exosuit for Walking Assistance;296
67.1;Abstract;296
67.2;1 Introduction;297
67.3;2 Methods;297
67.4;3 Results;298
67.5;4 Discussion & Conclusion;299
67.6;Acknowledgments;299
67.7;References;300
68;56 Biomechanical Analysis and Inertial Sensing of Ankle Joint While Stepping on an Unanticipated Bump;301
68.1;Abstract;301
68.2;1 Introduction;301
68.3;2 Methods;302
68.4;3 Results;303
68.5;4 Discussion and Conclusion;304
68.6;Acknowledgments;305
68.7;References;305
69;57 A Novel Approach to Increase Upper Extremity Active Range of Motion for Individuals with Duchenne Muscular Dystrophy Using Admittance Control: A Preliminary Study;306
69.1;Abstract;306
69.2;1 Introduction;306
69.3;2 Materials and Methods;307
69.4;3 Results;309
69.5;4 Discussion and Conclusion;310
69.6;Acknowledgments;310
69.7;References;310
70;58 Modulation of Knee Range of Motion and Time to Rest in Cerebral Palsy Using Two Forms of Mechanical Stimulation;311
70.1;Abstract;311
70.2;1 Introduction;312
70.3;2 Materials and Methods;313
70.3.1;2.1 Whole Body Vibration (WBV);313
70.3.2;2.2 Vestibular Stimulation (VS);313
70.3.3;2.3 Assessment Technique;313
70.4;3 Results;314
70.5;4 Discussion;314
70.6;5 Conclusion;315
70.7;References;315
71;59 Training Response to Longitudinal Powered Exoskeleton Training for SCI;316
71.1;Abstract;316
71.2;1 Introduction;316
71.3;2 Materials and Methods;317
71.3.1;2.1 Experimental Test Conditions;317
71.3.2;2.2 Data Collection and Analysis;318
71.4;3 Results;318
71.4.1;3.1 Demographics;318
71.4.2;3.2 Spatial Temporal Parameters;318
71.4.3;3.3 Correlation of Temporal-Spatial Measures to Velocity;318
71.4.4;3.4 CoM;319
71.4.5;3.5 Able Bodied with EksoGT™;319
71.5;4 Discussion;320
71.6;5 Conclusion;320
71.7;Acknowledgments;320
71.8;References;321
72;60 Adaptive Classification of Arbitrary Activities Through Hidden Markov Modeling with Automated Optimal Initialization;322
72.1;Abstract;322
72.2;1 Introduction;322
72.3;2 Methods;323
72.4;3 Results;324
72.5;4 Discussion and Conclusion;325
72.6;References;326
73;Design and Motion Analysis of a Wearable and Portable Hand Exoskeleton;327
73.1;1 Introduction;327
73.2;2 Design Phase;328
73.3;3 Results;329
73.4;4 Conclusion;330
73.5;References;330
74;Nitiglove: Nitinol-Driven Robotic Glove Used to Assist Therapy for Hand Mobility Recovery;332
74.1;1 Introduction;332
74.2;2 Engineering Design Process;333
74.2.1;2.1 Muscle Wires;333
74.2.2;2.2 Flex Sensors;334
74.2.3;2.3 Results;335
74.3;3 Conclusion;336
74.4;References;336
75;63 3D Printed Arm Exoskeleton for Teleoperation and Manipulation Applications;337
75.1;Abstract;337
75.2;1 Introduction;337
75.3;2 Exoskeleton Design;338
75.3.1;2.1 Mechanical Design;338
75.3.2;2.2 Mechatronics;339
75.4;3 Application 1: ICARUS;339
75.5;4 Application 2: DEXROV;340
75.6;Acknowledgments;341
75.7;References;341
76;64 Musculoskeletal Simulation of SOLEUS Ankle Exoskeleton for Countermeasure Exercise in Space;342
76.1;Abstract;342
76.2;1 Introduction;343
76.3;2 Methods;343
76.3.1;2.1 Musculoskeletal Human Model;343
76.3.2;2.2 Definition of Pedal-Pulling Motion;344
76.3.3;2.3 Conditions of the Linear Actuators;344
76.3.4;2.4 Interactions Between Human and SOLEUS System;344
76.3.5;2.5 Inverse Dynamics of Musculoskeletal System;345
76.4;3 Results;345
76.5;4 Conclusion;346
76.6;Acknowledgments;347
76.7;References;347
77;65 Human Gait Feature Detection Using Inertial Sensors Wavelets;348
77.1;Abstract;348
77.2;1 Introduction;348
77.3;2 Wireless Sensing System;349
77.4;3 Wavelet Analysis;350
77.5;4 Conclusion;351
77.6;References;352
78;On the Importance of a Motor Model for the Optimization of SEA-driven Prosthetic Ankles;353
78.1;1 Introduction;353
78.2;2 Materials and Methods;354
78.3;3 Results and Discussion;355
78.4;4 Conclusion;356
78.5;References;357
79;67 Assessment of a 7-DOF Hand Exoskeleton for Neurorehabilitation;358
79.1;Abstract;358
79.2;1 Introduction;358
79.3;2 Design Components;359
79.3.1;2.1 Admittance Control Paradigm;359
79.3.2;2.2 Wrist End Effector;360
79.3.3;2.3 Modular Gripper;360
79.3.4;2.4 Virtual Environment;361
79.4;3 Methods;361
79.5;4 Conclusion;362
79.6;References;362
80;Improving the Standing Balance of People with Spinal Cord Injury Through the Use of a Powered Ankle-Foot Orthosis;363
80.1;1 Introduction;363
80.2;2 Materials and Methods;364
80.3;3 Results;365
80.4;4 Discussion;365
80.5;5 Conclusions;367
80.6;References;367
81;Transparent Mode for Lower Limb Exoskeleton;368
81.1;1 Introduction;368
81.2;2 Experimental Set-Up;369
81.3;3 Gravity Compensation;369
81.4;4 Friction Compensation;370
81.5;5 Interaction Force;370
81.6;6 Control System;371
81.7;7 Conclusion;371
81.8;References;372
82;70 Human-Robot Mutual Force Borrowing and Seamless Leader-Follower Role Switching by Learning and Coordination of Interactive Impedance;373
82.1;Abstract;373
82.2;1 Introduction;373
82.3;2 Human-Robot Mutual Force Borrowing and Seamless Leader-Follower Role Switching;374
82.4;3 Co-Adaptive Optimal Control Framework;376
82.5;References;377
83;Upper Limb Exoskeleton Control for Isotropic Sensitivity of Human Arm;379
83.1;1 Introduction;379
83.2;2 Materials and Methods;380
83.2.1;2.1 Manipulability;380
83.2.2;2.2 Mobility;380
83.2.3;2.3 Control Method;381
83.3;3 Experiments and Results;381
83.4;4 Conclusions;383
83.5;References;383
84;72 AUTONOMYO: Design Challenges of Lower Limb Assistive Device for Elderly People, Multiple Sclerosis and Neuromuscular Diseases;384
84.1;Abstract;384
84.2;1 Introduction;384
84.3;2 Walking Impairments;385
84.4;3 Trends of Existing Medical Devices;386
84.4.1;3.1 Human-Robot Interaction;386
84.4.2;3.2 Design Architecture;386
84.5;4 Challenges Toward Assistive Devices;387
84.5.1;4.1 Human-Robot Interaction;387
84.5.2;4.2 Design Architecture;387
84.6;5 Conclusion;388
84.7;References;388
85;Passive Lower Back Moment Support in a Wearable Lifting Aid: Counterweight Versus Springs;389
85.1;1 Introduction;389
85.2;2 Materials and Methods;390
85.3;3 Results;392
85.4;4 Discussion;392
85.5;References;393


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.