Grigoriev / Ivanov / Molokovsky | Microwave Electronics | E-Book | sack.de
E-Book

E-Book, Englisch, Band 61, 566 Seiten, eBook

Reihe: Springer Series in Advanced Microelectronics

Grigoriev / Ivanov / Molokovsky Microwave Electronics


1. Auflage 2018
ISBN: 978-3-319-68891-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 61, 566 Seiten, eBook

Reihe: Springer Series in Advanced Microelectronics

ISBN: 978-3-319-68891-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book describes the physical basis of microwave electronics and related topics, such as microwave vacuum and microwave semiconductor devices.It comprehensively discusses the main types of microwave vacuum and microwave semiconductor devices, their principles of action, theory, parameters and characteristics, as well as ways of increasing the frequency limit of various devices up to the terahertz frequency band. Further, it applies a unified approach to describe charged particle interaction within electromagnetic fields and the motion laws of charged particles in various media.  The book is intended as a manual for researchers and engineers, as well as advanced undergraduate and graduate students.

Andrey D. Grigoriev graduated from Leningrad Electrotechnical Institute (LETI) in 1960 as electronics engineer. He received the PhD degree in Microwave electronics in 1967 and the Doctor of technical science degree in 1985. A.D. Grigoriev is working in LETI as assistant professor and professor, delivering lectures on electrodynamics, microwave technique and microwave electronics. He works also at 'Svetlana' JSC as a consultant. Professor Grigoriev is the author of more than 150 publications, including 4 monographies: 'Microwave cavities and slow-wave structures' (1984), 'Electrodynamics and microwave technique', 'Methods of computational electrodynamics' (2012) and 'Microwave electronics' (2016). He is a member of the editorial board of several Russian and international magazines. Vyacheslav A. Ivanov graduated from  St Petersburg Electrotechnical University ('LETI') in 1970. He became Associate Professor in 1980. his scientific interest is  in the field of computer modeling of microwave tubes, In 1981-1982  he had a scientific research stay in Sweden.  His activities concern microwave transistors and development of industrial microwave plants. Since 1970 he lectures on Microwave Electronics. He wrote 15 textbooks and has 23 patents of the Russian Federation.  Sergey I. Molokovsky graduated from LETI in 1953. He received the PhD and Doctor degrees in the field of microwave electronics. He is professor of Radio electronics department of the LETI. He is author of the book 'Intense electron and ion beams'. Professor Molokovsky was UNESCO expert. He authored about 150 scientific papers and  5 scientific monographs.  

Grigoriev / Ivanov / Molokovsky Microwave Electronics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;7
2;Contents;9
3;Notations;16
4;Introduction;19
5;Microwave Electronics Physical Foundations;22
6;1 Main Stages of Microwave Electronics Development;23
6.1;1.1 Background;23
6.2;1.2 Microwave Vacuum Electronics;25
6.3;1.3 Semiconductor Microwave Electronics;27
6.4;1.4 Comparative Characteristics of Vacuum and Semiconductor Devices;28
6.5;1.5 Prospects for the Development of Microwave Electronics;29
7;2 Interaction of Charged Particles with an Alternating Electromagnetic Field;31
7.1;2.1 Radiation of Individual and Collective Charged Particles;31
7.2;2.2 Macroscopic Equations of Microwave Electronics;36
7.3;2.3 Motion Equations of Charged Particles;38
7.3.1;2.3.1 Motion of a Single Particle in Vacuum;38
7.3.2;2.3.2 The Particles Ensemble Motion in Vacuum;40
7.3.3;2.3.3 The Particles Ensemble Motion in Solid;42
7.4;2.4 Material Parameters and Relaxation Processes;44
7.5;2.5 Noises in Microwave Devices;52
7.6;Advancement Questions;61
8;3 Oscillations and Waves in Charged Particle Beams;63
8.1;3.1 Space Charge Oscillations;63
8.2;3.2 Space Charge Waves in Electron Beams;65
8.3;3.3 Charge Carrier Waves in Semiconductors;69
8.4;Advancement Questions;72
9;4 Interaction of Charged Particle Fluxes with a High-Frequency Electromagnetic Field;73
9.1;4.1 Interaction Power;73
9.2;4.2 Interaction with Quasi-Static Field, the Induced Current. The Shokley-Ramo Theorem;77
9.3;4.3 Current in the Flat Interelectrode Gap and Its External Circuit;79
9.4;4.4 Electric Gap Field Effect on the Motion of Charged Particles;83
9.5;4.5 Energy Exchange Between Electrons and the Gap Field;86
9.6;4.6 Interaction of Charged Particles with a Travelling Wave Field;90
9.7;Advancement Questions;91
10;5 A Microwave Device as a Circuit Element;92
10.1;5.1 Microwave Devices Requirements;92
10.2;5.2 Classification of Microwave Devices;93
10.3;5.3 The Basic Functional Components of Electron Devices;95
10.4;5.4 Parameters and Characteristics of Microwave Devices;97
10.4.1;5.4.1 Device Parameters;97
10.4.2;5.4.2 Characteristics of Microwave Devices;98
10.5;Advancement Questions;101
11;Microwave Vacuum Electron Devices;103
12;6 Devices with Quasi-static Control;104
12.1;6.1 General Characteristics and Parameters of Devices with Quasi-static Control;104
12.2;6.2 The Monotron and Diode Admittance;107
12.3;6.3 Operating Modes of Electron Tubes;109
12.4;6.4 Amplifier Circuits;111
12.5;6.5 The Influence of Cathode Contact Inductance;113
12.6;6.6 The Influence of Space Charge and Displacement Current in the Cathode-Grid Space;115
12.7;6.7 Motion of Electrons in the Grid-Anode Space;117
12.8;6.8 Modern Medium and High Power Tetrodes;118
12.9;6.9 Microwave Vacuum Microelectronics Devices;121
12.10;Advancement Questions;124
13;7 O-Type Microwave Devices;126
13.1;7.1 General Characteristics of O-Type Devices;126
13.2;7.2 Klystrons;127
13.2.1;7.2.1 The Structure and Operating Principle of the Double-Cavity Transit-Time Klystron;127
13.2.2;7.2.2 Velocity Modulation in the Interaction Gap;128
13.2.3;7.2.3 The Kinematic Theory of Bunching;130
13.2.4;7.2.4 Effect of Longitudinal Electron Repulsion;135
13.2.5;7.2.5 The Extraction of Energy from the Bunched Electron Beam;138
13.2.6;7.2.6 Multi-Cavity Klystrons;142
13.2.7;7.2.7 Extended Interaction Klystrons;151
13.2.8;7.2.8 Multi-Beam and Multi-Barrel Klystrons;153
13.2.9;7.2.9 Sheet Beam Klystrons;157
13.2.10;7.2.10 Structure, Parameters and Characteristics of Modern Klystrons;158
13.2.11;7.2.11 Other Types of Klystrons;164
13.3;7.3 Travelling Wave Tubes;171
13.3.1;7.3.1 Operating Principle of Travelling Wave Tubes;171
13.3.2;7.3.2 The Linear Theory of O-Type TWTs;174
13.3.3;7.3.3 Elements of the Nonlinear Theory of TWTs;188
13.3.4;7.3.4 Methods of Increasing TWT Efficiency;194
13.3.5;7.3.5 TWT Design;197
13.3.6;7.3.6 Parameters and Application Regions of TWTOs;199
13.4;7.4 Backward-Wave Oscilators;201
13.4.1;7.4.1 Operating Principle of Backward-Wave Tubes;201
13.4.2;7.4.2 Linear Theory of BWOs;203
13.4.3;7.4.3 Electronic Tuning of BWOs;206
13.4.4;7.4.4 Electronic Efficiency of BWOs;207
13.4.5;7.4.5 Resonance BWOs;207
13.4.6;7.4.6 Design and Parameters of BWOs;208
13.5;7.5 O-Type Hybrid Devices;210
13.5.1;7.5.1 Hybridization Advantages;210
13.5.2;7.5.2 The TWYSTRON;210
13.5.3;7.5.3 The Klystrode;211
13.5.4;7.5.4 The Orotron;214
13.6;Advancement Questions;218
14;8 M-Type Microwave Electron Devices;220
14.1;8.1 General Characteristics of M-type Devices;220
14.2;8.2 Interaction of Electrons with the High-Frequency Field in M-type Devices;221
14.2.1;8.2.1 Motion of Electrons in Constant Crossed Fields;221
14.2.2;8.2.2 Interaction of Electrons with the Slow Wave;225
14.2.3;8.2.3 Linear Interaction Theory in M-type Devices;227
14.3;8.3 M-type Devices with an Open Electron Beam;234
14.3.1;8.3.1 The Traveling-Wave Tube of M-type;234
14.3.2;8.3.2 The M-type Backward-Wave Oscillator;238
14.4;8.4 M-type Devices with a Re-entrant Beam;240
14.4.1;8.4.1 The Multi-cavity Magnetron;240
14.4.2;8.4.2 Other Types of Magnetron;259
14.4.3;8.4.3 The Platinotron;264
14.5;Advancement Questions;269
15;9 Gyro-resonant Devices;271
15.1;9.1 The Operating Principle of Gyro-resonant Devices;271
15.2;9.2 Electron Beam Interaction with the High-Frequency Electrical Field;272
15.2.1;9.2.1 Cyclotron Resonance;272
15.2.2;9.2.2 Azimuthal Bunching;274
15.2.3;9.2.3 Equations of Electron Motion;277
15.2.4;9.2.4 Abridged Motion Equations;279
15.2.5;9.2.5 Field and Electrons Interaction on Cyclotron Frequency;281
15.3;9.3 The Gyrotron;281
15.3.1;9.3.1 The Design and Operating Principle of the Gyrotron;281
15.3.2;9.3.2 Electronic Efficiency;282
15.3.3;9.3.3 Total Efficiency and Output Power;285
15.3.4;9.3.4 Gyrotron Starting Current;287
15.3.5;9.3.5 Influence of the Spread of Electron Velocities on Gyrotron Operation;287
15.3.6;9.3.6 Large-Orbit Gyrotrons;288
15.3.7;9.3.7 Parameters and Applications of Gyrotrons;289
15.4;9.4 Gyroklystrons;290
15.4.1;9.4.1 Gyroklystron Design;290
15.4.2;9.4.2 Azimuthal Bunching in Gyroklystrons;292
15.4.3;9.4.3 Parameters and Applications of Gyroklystrons;294
15.5;9.5 The Gyro-TWT;295
15.5.1;9.5.1 Gyro-TWT Design;295
15.5.2;9.5.2 Features of Beam and Field Interaction;296
15.6;9.6 The Gyro-BWO;298
15.7;Advancement Questions;299
16;10 Relativistic Microwave Devices;301
16.1;10.1 General Characteristics of Relativistic Microwave Devices;301
16.2;10.2 Classical Relativistic Devices;302
16.2.1;10.2.1 Relativistic Klystrons;302
16.2.2;10.2.2 Relativistic TWTs and BWOs;304
16.2.3;10.2.3 Relativistic Magnetrons;306
16.3;10.3 Free-Electron Lasers;308
16.3.1;10.3.1 Working Principle of Free-Electron Lasers;308
16.3.2;10.3.2 The Ubitron—The Predecessor of the FEL;309
16.3.3;10.3.3 The FEL—Relativistic Ubitron-Self-Oscillator;313
16.3.4;10.3.4 Analysis of Radiation Processes in the FEL;315
16.3.5;10.3.5 FEL-Scattertron;316
16.3.6;10.3.6 High-Current FEL;317
16.3.7;10.3.7 X-Ray Free-Electron Laser;318
16.4;10.4 Vircators;323
16.4.1;10.4.1 Virtual Cathode Effect;323
16.4.2;10.4.2 Types and Parameters of Vircators;324
16.4.3;10.4.3 Low-Voltage Vircators;327
16.5;10.5 Gyrocons and Magnicons;327
16.6;Advancement Questions;331
17;Semiconductor Microwave Devices;333
18;11 Key Functional Elements of Semiconductor Microwave Devices;334
18.1;11.1 Elements of the Electronic Band Structure;334
18.2;11.2 Semiconductor Materials for Microwave Electronics;338
18.2.1;11.2.1 Common Semiconductor Materials;338
18.2.2;11.2.2 Graphene as a Semiconductor for the Microwave Band;340
18.3;11.3 Functional Elements of Microwave Semiconductor Devices (MSD);343
18.3.1;11.3.1 Features of the MSD Functional Scheme;343
18.3.2;11.3.2 Uniformly Doped Semiconductors;344
18.3.3;11.3.3 Metal-Semiconductor Contact Properties;345
18.3.4;11.3.4 Properties of the p-n Junction;350
18.3.5;11.3.5 Ohmic Contact;356
18.4;11.4 Classification of Microwave Semiconductor Devices;358
18.5;Advancement Questions;359
19;12 Diodes with Positive Dynamic Resistance;360
19.1;12.1 Detector Diodes;360
19.1.1;12.1.1 Designation and Design of Detector Diodes;360
19.1.2;12.1.2 Static and Dynamic Characteristics;364
19.1.3;12.1.3 Dynamic Parameters;365
19.1.4;12.1.4 Circuit Application;370
19.2;12.2 Mixer Diodes;371
19.2.1;12.2.1 Functional Designation and Usage Principle of the Mixer Diode;371
19.2.2;12.2.2 Mixer Diode Schemes;374
19.3;12.3 p-i-n Diodes;376
19.3.1;12.3.1 Structure, Principle of Operation and Equivalent Circuit of the p-i-n Diode;376
19.3.2;12.3.2 Peculiarities of the Use of p-i-n Diodes in Circuits;381
19.4;12.4 Varactor Diodes;383
19.4.1;12.4.1 Structure, Equivalent Circuit and Applications of Varactor Diodes;383
19.4.2;12.4.2 Varactor Structures;384
19.4.3;12.4.3 Heterostructure Barrier Varactor (HBV diode);387
19.4.4;12.4.4 Applications of Varactor Diodes;388
19.4.5;12.4.5 Manley-Rowe Relations;391
19.4.6;12.4.6 Parametric Amplifier;393
19.5;Advancement Questions;397
20;13 Diodes with Negative Dynamic Resistance;399
20.1;13.1 General Characteristics of Diodes with Negative Dynamic Resistance;399
20.2;13.2 Analysis of Semiconductor Sample Dynamic Resistance;401
20.3;13.3 Ways to Obtain an Alternating Convection Current in a Diode Structure;409
20.4;13.4 IMPATT Diodes;413
20.4.1;13.4.1 Structure and Operation Principle of the IMPATT Diode;413
20.4.2;13.4.2 Analysis of the Processes in the Avalanche Zone. Equivalent Resistance;415
20.4.3;13.4.3 Small-Signal Impedance of the IMPATT Diode;420
20.4.4;13.4.4 Nonlinear Operating Mode of the IMPATT Diode;421
20.4.5;13.4.5 IMPATT Diodes Operating in Trapped Plasma Transit Mode (TRAPATT);426
20.4.6;13.4.6 IMPATT Diode Structure and Design;429
20.4.7;13.4.7 Structure and Parameters of IMPATT Diode Oscillators;432
20.5;13.5 Injection-and-Transit-Time Diodes;434
20.6;13.6 Transferred Electron Devices;435
20.6.1;13.6.1 The Gunn Effect. The Running High-Field Domain;435
20.6.2;13.6.2 Distribution of Static Field in the Gunn Diode;440
20.7;13.7 Tunnel Diode;442
20.7.1;13.7.1 Structure and Operating Principle;442
20.7.2;13.7.2 Equivalent Circuit. Features of Use in the Microwave Band;444
20.7.3;13.7.3 Resonance Tunnel Diode (RTD);446
20.8;Advancement Questions;449
21;14 Microwave Transistors;451
21.1;14.1 Field Effect Transistors;451
21.1.1;14.1.1 Structure of the Schottky Field Effect Transistor;451
21.1.2;14.1.2 Static Characteristics of Schottky Field Effect Transistors;454
21.1.3;14.1.3 Small-Signal Parameters and Equivalent MESFET Circuit;457
21.1.4;14.1.4 Modelling of Field Effect Transistors;464
21.1.5;14.1.5 Peculiarities of Mathematical Modeling of Field Effect Transistors;471
21.1.6;14.1.6 Quasi-Two-Dimensional Temperature Model of MESFET;473
21.1.7;14.1.7 Noise Characteristics of Field Effect Transistors;477
21.1.8;14.1.8 Noise Parameters of the Transistor as a Function of the Working Regime;480
21.1.9;14.1.9 High Electron Mobility Field Effect Transistor;481
21.1.10;14.1.10 Developmental Prospects of Microwave Field Effect Transistors;484
21.2;14.2 Microwave Bipolar Transistors;487
21.2.1;14.2.1 Structure and Operating Principle;487
21.2.2;14.2.2 Equivalent Circuits and HF Parameters of BT;489
21.2.3;14.2.3 Heterojunction Bipolar Transistors;492
21.3;14.3 Microwave Transistor Specifics;494
21.3.1;14.3.1 Physical and Technological Limitations of Creating Microwave Transistors;494
21.3.2;14.3.2 Transistor “Family Tree”;495
21.3.3;14.3.3 Comparison of Transistor Speeds;498
21.3.4;14.3.4 New Type of Transistors: Graphene FET;499
21.4;14.4 Using Transistors in Hybrid and Monolithic IC in the Microwave Band;500
21.5;Advancement Questions;502
22;Appendix A: Time and Space Intervals Defining the Behavior of Charged Particles;503
23;Appendix B: Electron-Optical Systems of Microwave Devices;512
24;Appendix C: Electrodynamic Systems of Microwave Electron Devices;530
25;Bibliography List;557
26;Index;559

Preface.- Part 1. Physical bases of microwave electronics.- History of microwave electronics.- Basic laws of microwave electronics.- Oscillations and waves in charged particles beams.- Charged particle interaction with alternating electromagnetic field.- Microwave device as an element of a microwave circuit.- Part 2. Vacuum electron devices.- Power grid tubes.- O-type microwave devices.- M-type microwave devices.- Gyro-resonance devices.- Relativistic devices.- Part 3. Solid-state microwave devices.- Main functional elements of solid state devices.- Diodes with positive dynamic impedance.- Diodes with negative dynamic impedance.- Microwave transistors.


Andrey D. Grigoriev graduated from Leningrad Electrotechnical Institute (LETI) in 1960 as electronics engineer. He received the PhD degree in Microwave electronics in 1967 and the Doctor of technical science degree in 1985. A.D. Grigoriev is working in LETI as assistant professor and professor, delivering lectures on electrodynamics, microwave technique and microwave electronics. He works also at “Svetlana” JSC as a consultant. Professor Grigoriev is the author of more than 150 publications, including 4 monographies: “Microwave cavities and slow-wave structures” (1984), “Electrodynamics and microwave technique”, “Methods of computational electrodynamics” (2012) and “Microwave electronics” (2016). He is a member of the editorial board of several Russian and international magazines. Vyacheslav A. Ivanov graduated from  St Petersburg Electrotechnical University ("LETI") in 1970. He became Associate Professor in 1980. his scientific interest is  in the field of computer modeling of microwave tubes, In 1981-1982  he had a scientific research stay in Sweden.  His activities concern microwave transistors and development of industrial microwave plants. Since 1970 he lectures on Microwave Electronics. He wrote 15 textbooks and has 23 patents of the Russian Federation. Sergey I. Molokovsky graduated from LETI in 1953. He received the PhD and Doctor degrees in the field of microwave electronics. He is professor of Radio electronics department of the LETI. He is author of the book “Intense electron and ion beams”. Professor Molokovsky was UNESCO expert. He authored about 150 scientific papers and  5 scientific monographs.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.