Grimaldi | Fibonacci and Catalan Numbers | E-Book | sack.de
E-Book

E-Book, Englisch, 380 Seiten, E-Book

Grimaldi Fibonacci and Catalan Numbers

An Introduction
1. Auflage 2012
ISBN: 978-1-118-15976-7
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

An Introduction

E-Book, Englisch, 380 Seiten, E-Book

ISBN: 978-1-118-15976-7
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Discover the properties and real-world applications of theFibonacci and the Catalan numbers
With clear explanations and easy-to-follow examples, Fibonacciand Catalan Numbers: An Introduction offers a fascinating overviewof these topics that is accessible to a broad range of readers.
Beginning with a historical development of each topic, the bookguides readers through the essential properties of the Fibonaccinumbers, offering many introductory-level examples. The authorexplains the relationship of the Fibonacci numbers to compositionsand palindromes, tilings, graph theory, and the Lucas numbers.
The book proceeds to explore the Catalan numbers, with theauthor drawing from their history to provide a solid foundation ofthe underlying properties. The relationship of the Catalan numbersto various concepts is then presented in examples dealing withpartial orders, total orders, topological sorting, graph theory,rooted-ordered binary trees, pattern avoidance, and the Narayananumbers.
The book features various aids and insights that allow readersto develop a complete understanding of the presented topics,including:
* Real-world examples that demonstrate the application of theFibonacci and the Catalan numbers to such fields as sports, botany,chemistry, physics, and computer science
* More than 300 exercises that enable readers to explore many ofthe presented examples in greater depth
* Illustrations that clarify and simplify the concepts
Fibonacci and Catalan Numbers is an excellent book for courseson discrete mathematics, combinatorics, and number theory,especially at the undergraduate level. Undergraduates will find thebook to be an excellent source for independent study, as well as asource of topics for research. Further, a great deal of thematerial can also be used for enrichment in high schoolcourses.

Grimaldi Fibonacci and Catalan Numbers jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface xi
Part One. The Fibonacci Numbers
1. Historical Background 3
2. The Problem of the Rabbits 5
3. The Recursive Definition 7
4. Properties of the Fibonacci Numbers 8
5. Some Introductory Examples 13
6. Composition and Palindromes 23
7. Tilings: Divisibility Properties of the Fibonacci Numbers33
8. Chess Pieces on Chessboards 40
9. Optics, Botany, and the Fibonacci Numbers 46
10. Solving Linear Recurrence Relations: The Binet Form forFn 51
11. More on alpha and beta: Applications in Trigonometry,Physics, Continued Fractions, Probability, the Associative Law, andComputer Science 65
12. Examples from Graph Theory: An Introduction to the LucasNumbers 79
13. The Lucas Numbers: Further Properties and Examples 100
14. Matrices, The Inverse Tangent Function, and an Infinite Sum113
15. The ged Property for the Fibonacci Numbers 121
16. Alternate Fibonacci Numbers 126
17. One Final Example? 140
Part Two. The Catalan Numbers
18. Historical Background 147
19. A First Example: A Formula for the Catalan Numbers 150
20. Some Further Initial Examples 159
21. Dyck Paths, Peaks, and Valleys 169
22. Young Tableaux, Compositions, and Vertices and Ares 183
23. Triangulating the Interior of a Convex Polygon 192
24. Some Examples from Graph Theory 195
25. Partial Orders, Total Orders, and Topological Sorting205
26. Sequences and a Generating Tree 211
27. Maximal Cliques, a Computer Science Example, and the TennisBall Problem 219
28. The Catalan Numbers at Sporting Events 226
29. A Recurrence Relation for the Catalan Numbers 231
30. Triangulating the Interior of a Convex Polygon for theSecond Time 236
31. Rooted Ordered Binary Trees, Pattern Avoidance, and DataStructures 238
32. Staircases, Arrangements of Coins, Handshaking Problem, andNoncrossing Partitions 250
33. The Narayana Numbers 268
34. Related Number Sequences: The Motzkin Numbers, The FineNumbers, and The Schröder Numbers 282
35. Generalized Catalan Numbers 290
36. One Final Example? 296
Solutions for the Odd-Numbered Exercises 301
Index 355


RALPH P. GRIMALDI, PhD, is Professor of Mathematics at Rose-Hulman Institute of Technology. With more than forty years of experience in academia, Dr. Grimaldi has published numerous articles in discrete mathematics, combinatorics, and graph theory. Over the past twenty years, he has developed and led mini-courses and workshops examining the Fibonacci and the Catalan numbers.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.